Search by entering one or more keywords or a phrase in quotes.
Search results
Your search returned 1084 results

Finding roots of a cubic and the roots of a quartic by inspection. Numbas resources have been made available under a Creative Commons licence by Bill Foster and Christian Perfect, School of Mathematics & Statistics at Newcastle University.

We can build up complicated functions from simple functions by using the
process of composition, where the output of one function becomes the input of
another. It is also sometimes necessary to carry out the reverse process,
decomposing a complicated function into two or more simple functions.
This unit explains how.

We can build up complicated functions from simple functions by using the
process of composition, where the output of one function becomes the input of another. It is also sometimes necessary to carry out the reverse process, decomposing a complicated function into two or more simple functions. This unit explains how. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

We can build up complicated functions from simple functions by using the
process of composition, where the output of one function becomes the input of another. It is also sometimes necessary to carry out the reverse process, decomposing a complicated function into two or more simple functions. This unit explains how. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

3 questions. Mini-test on concentration of solutions. Numbas resources have been made available under a Creative Commons licence by Bill Foster and Christian Perfect, School of Mathematics & Statistics at Newcastle University.

In this unit we study the conic sections. These are the curves obtained when a
cone is cut by a plane. We find the equations of one of these curves, the
parabola, by using an alternative description in terms of points whose
distances from a fixed point and a fixed line are equal. We also find the
equation of a tangent to a parabola using techniques from calculus, and we use this to prove the reflective property of the parabola. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

In this unit we study the conic sections. These are the curves obtained when a
cone is cut by a plane. We find the equations of one of these curves, the
parabola, by using an alternative description in terms of points whose
distances from a fixed point and a fixed line are equal. We also find the
equation of a tangent to a parabola using techniques from calculus, and we use this to prove the reflective property of the parabola. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

IPOD VIDEO:
In this unit we study the conic sections. These are the curves obtained when a cone is cut by a plane. We find the equations of one of these curves, the parabola, by using an alternative description in terms of points whose distances from a fixed point and a fixed line are equal. We also find the equation of a tangent to a parabola using techniques from calculus, and we use this to prove the reflective property of the parabola.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

IPOD VIDEO:
In this unit we study the conic sections. These are the curves obtained when a cone is cut by a plane. We find the equations of one of these curves, the parabola, by using an alternative description in terms of points whose distances from a fixed point and a fixed line are equal. We also find the equation of a tangent to a parabola using techniques from calculus, and we use this to prove the reflective property of the parabola.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

IPOD VIDEO:
In this unit we study the conic sections. These are the curves obtained when a cone is cut by a plane. We find the equations of one of these curves, the parabola, by using an alternative description in terms of points whose distances from a fixed point and a fixed line are equal. We also find the equation of a tangent to a parabola using techniques from calculus, and we use this to prove the reflective property of the parabola.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

IPOD VIDEO:
In this unit we study the conic sections. These are the curves obtained when a cone is cut by a plane. We find the equations of one of these curves, the parabola, by using an alternative description in terms of points whose distances from a fixed point and a fixed line are equal. We also find the equation of a tangent to a parabola using techniques from calculus, and we use this to prove the reflective property of the parabola.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

IPOD VIDEO:
In this unit we study the conic sections. These are the curves obtained when a cone is cut by a plane. We find the equations of one of these curves, the parabola, by using an alternative description in terms of points whose distances from a fixed point and a fixed line are equal. We also find the equation of a tangent to a parabola using techniques from calculus, and we use this to prove the reflective property of the parabola.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This leaflet introduces the concept of conservation of momentum in both one and two dimensions.

Interest earned on an investment, or due on a loan, is usually compounded. On occasions, interest is compounded continuously, which has the effect of increasing the amount of interest.

On occasions it is necessary to convert from one system of units to another.
This leaflet explains how this is done.

Cramer's rule can be used to solve simultaneous equations using determinants.
This leaflet states and illustrates the rule. (Engineering Maths First Aid Kit 5.2)

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

All cubic equations have either one real root, or three real roots. In this video we explore why this is so.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

An Algebra Refresher.
This booklet revises basic algebraic techniques.
This is a welsh language version.