Accessibility options:





Search by entering one or more keywords or a phrase in quotes.

Categories

Search results

Your search returned 184 results

Resource type Multiplication and division
This leaflet explains how to multiply and divide algebraic fractions. (Engineering Maths First Aid Kit 2.9)
Resource type Partial fractions
An algebraic fraction can often be broken down into the sum of simpler fractions called partial fractions. This process is required in the solution of a number of engineering and scientific problems. This booklet explains how this is done.
Resource type Partial Fractions
After viewing this tutorial, you should be able to explain the meaning of the terms 'proper fraction' and 'improper fraction', and express an algebraic fraction as the sum of its partial fractions. (Mathtutor Video Tutorial) algebraic fraction as the sum of its partial fractions. (Mathtutor Video Tutorial) This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Partial Fractions
After viewing this tutorial, you should be able to explain the meaning of the terms 'proper fraction' and 'improper fraction', and express an algebraic fraction as the sum of its partial fractions. (Mathtutor Video Tutorial) algebraic fraction as the sum of its partial fractions. (Mathtutor Video Tutorial) The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Partial fractions 1
This leaflet explains how to write an algebraic fraction as the sum of its partial fractions. (Engineering Maths First Aid Kit 2.23)
Resource type Polynomial division
Polynomial division is a process used to simplify certain sorts of algebraic fraction. It is very similar to long division of numbers. This booklet describes how the process is carried out.
Resource type Polynomial Division
In order to simplify certain sorts of algebraic fraction we need a process known as polynomial division. This unit describes this process. (Mathtutor Video Tutorial) This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Polynomial Division
In order to simplify certain sorts of algebraic fraction we need a process known as polynomial division. This unit describes this process. (Mathtutor Video Tutorial) The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Polynomial Division 1
In order to simplify certain sorts of algebraic fraction we need a process known as polynomial division. This unit describes this process. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Polynomial Division 2
In order to simplify certain sorts of algebraic fraction we need a process known as polynomial division. This unit describes this process. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Polynomial Division 3
In order to simplify certain sorts of algebraic fraction we need a process known as polynomial division. This unit describes this process. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Polynomial Division 4
In order to simplify certain sorts of algebraic fraction we need a process known as polynomial division. This unit describes this process. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Powers
A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples. (Mathtutor Video Tutorial) This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Powers
A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples. (Mathtutor Video Tutorial) The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying Algebraic Fractions
This video explains how algebraic fractions can be simplified by cancelling common factors. (Mathtutor Video Tutorial) This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying Algebraic Fractions
This video explains how algebraic fractions can be simplified by cancelling common factors. (Mathtutor Video Tutorial) The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying algebraic fractions Part 1
IPOD VIDEO: This video explains how algebraic fractions can be simplified by cancelling common factors This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying algebraic fractions Part 2
IPOD VIDEO: This video explains how algebraic fractions can be simplified by cancelling common factors. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying algebraic fractions Part 3
IPOD VIDEO: This video explains how algebraic fractions can be simplified by cancelling common factors. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying algebraic fractions Part 4
IPOD VIDEO: This video explains how algebraic fractions can be simplified by cancelling common factors. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying algebraic fractions Part 5
IPOD VIDEO: This video explains how algebraic fractions can be simplified by cancelling common factors. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying algebraic fractions Part 6
IPOD VIDEO: This video explains how algebraic fractions can be simplified by cancelling common factors. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying algebraic fractions Part 7
IPOD VIDEO: This video explains how algebraic fractions can be simplified by cancelling common factors. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simplifying fractions
This leaflet explains how algebraic fractions can be simplified by cancelling common factors. (Engineering Maths First Aid Kit 2.7)
Resource type Simplifying Fractions
This booklet explains how an algebraic fraction can be expressed in its lowest terms, or simplest form.
Resource type Simultaneous equations - Numbas
Two questions on solving systems of simultaneous equations. Numbas resources have been made available under a Creative Commons licence by Bill Foster and Christian Perfect, School of Mathematics & Statistics at Newcastle University.