Search by entering one or more keywords or a phrase in quotes.
Search results
Your search returned 872 results

This leaflet provides a table of common functions and their derivatives. (Engineering Maths First Aid Kit 8.2)

This leaflet provides a table of common functions and their derivatives, and the opportunity to practice using it.

This leaflet provides a table of integrals of common functions. (Engineering Maths First Aid Kit 8.7)

This unit explains how differentiation can be used to calculate the equations of the tangent and normal to a curve.
The tangent is a straight line which just touches the curve at a given point. The normal is a straight line which is
perpendicular to the tangent. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This unit explains how differentiation can be used to calculate the equations of the tangent and normal to a curve.
The tangent is a straight line which just touches the curve at a given point. The normal is a straight line which is
perpendicular to the tangent. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This pack contains all of the mathcentre booklets for use with students who want to 'teach themselves'. It may be downloaded as a zip file. Select Save to download the zip file to your computer.

New entrants to chemistry degree programmes are given a 24 hour course in mathematics if they do not have an A level qualification in the subject. This concentrates only on the skills necessary to successfully complete the first year physical chemistry course; these include simple statistics, functions, partial differentiation and integration. The course is taught using chemically relevant examples, in an order related to the chemistry course rather than traditional mathematics courses.

The purpose of this Guide is to argue the case for putting problem-solving at the heart of a mathematics degree; for giving students a flavour, according to their capabilities, of what it is to be a mathematician; a taste for rising to a mathematical challenge and overcoming it. Its purpose is also to make it easier for colleagues who share our vision to find ways of realising it in their own teaching. This book was edited by Matthew Badger, Chris Sangwin and Trevor Hawkes. This document is distributed under a Creative Commons Attribution No Derivatives (CC BY-ND) license.

Teaching students to write mathematics correctly is often neglected part of a mathematics degree. A workshop was convened by Kevin Houston to consider approaches to teaching this topic. A DVD was produced with videos of talks by Kevin Houston (University of Leeds), Franco Vivaldi (Queen Mary, University of London) and Mike Robinson (Sheffield Hallam University), along with further reading and sample teaching resources. At this website you can download and burn your own DVD or view the videos and other materials online. This website is not made available under a Creative Commons licence.

IPOD VIDEO:
In this unit we find the equation of a circle, when we are told its centre and its radius. There are two different forms of the equation, and you should be able to recognise both of them. We also look at some problems involving tangents to circles.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

IPOD VIDEO:
In this unit we find the equation of a circle, when we are told its centre and its radius. There are two different forms of the equation, and you should be able to recognise both of them. We also look at some problems involving tangents to circles.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

IPOD VIDEO:
In this unit we find the equation of a circle, when we are told its centre and its radius. There are two different forms of the equation, and you should be able to recognise both of them. We also look at some problems involving tangents to circles.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This leaflet explains how an Argand diagram is used to provide a pictorial representation of a complex number. (Engineering Maths First Aid Kit 7.3)

This leaflet explains how complex numbers can be represented pictorially using an Argand Diagram.
There are accompanying videos. Sigma resource Unit 8.

This video explains how complex numbers can be represented pictorially using an Argand Diagram. Sigma resource Unit 8.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by mathcentre.

This mobile phone video explains how complex numbers can be represented pictorially using an Argand Diagram.
There is an accompanying leaflet.

This mobile phone video explains how complex numbers can be represented pictorially using an Argand Diagram. Sigma resource Unit 8.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by mathcentre.

A special rule, the chain rule, exists for differentiating a function of another function. This unit illustrates this rule. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A special rule, the chain rule, exists for differentiating a function of another function. This unit illustrates this rule. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This leaflet explains what is meant by the complex conjugate of a complex number.
There are accompanying videos. Sigma resource Unit 6.

This video explains what is meant by the complex conjugate of a complex number.
There is an accompanying leaflet. Sigma resource Unit 6.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by mathcentre.

This mobile phone video explains what is meant by the complex conjugate of a complex number.
There is an accompanying leaflet.

This mobile phone video explains what is meant by the complex conjugate of a complex number. Sigma resource Unit 6.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by mathcentre.

This video explains what is meant by the complex conjugate of a complex number.
There is an accompanying leaflet. Sigma resource Unit 6.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by mathcentre.

Video for iPod.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

Double angle formulae are so called because they involve trigonometric functions of double angles e.g. sin 2A, cos 2A and tan 2A. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.