Accessibility options:





Search by entering one or more keywords or a phrase in quotes.

Categories

Search results

Your search returned 467 results

Resource type Limits of sequences
In this unit, we recall what is meant by a simple sequence, and introduce infinite sequences. We explain what it means for two sequences to be the same, and what is meant by the n-th term of a sequence. We also investigate the behaviour of infinite sequences, and see that they might tend to plus or minus infinity, or to a real limit, or behave in some other way. (Mathtutor Video Tutorial) The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Sine, cosine and tangent of an angle of any size
Knowledge of the trigonometric ratios sine, cosine and tangent is vital in many fields of engineering, maths and science. This unit explains how the sine, cosine and tangent of an arbitrarily sized angle can be found. (Mathtutor Video Tutorial) The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 1
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 10
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 2
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 3
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 4
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 5
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 6
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 7
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 8
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Logarithms 9
Logarithms appear in all sorts of calculations in engineering and science, business and economics. Before the days of calculators they were used to assist in the process of multiplication by replacing the operation of multiplication by addition. Similarly, they enabled the operation of division to be replaced by subtraction. They remain important in other ways, one of which is that they provide the underlying theory of the logarithm function. This has applications in many fields, for example, the decibel scale in acoustics. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Simple Linear Equations
In this unit we give examples of simple linear equations and show you how these can be solved. In any equation there is an unknown quantity, x say, that we are trying to find. In a linear equation this unknown quantity will appear only as a multiple of x, and not as a function of x such as x2, x3, sin x and so on. Linear equations occur so frequently in the solution of other problems that a thorough understanding of them is essential. (Mathtutor Video Tutorial) This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Introduction to functions
A function is a rule which operates on one number to give another number. However, not every rule describes a valid function. This unit explains how to see whether a given rule describes a valid function, and introduces some of the mathematical terms associated with functions. (Mathtutor Video Tutorial) This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Introduction to Functions - Part 1
IPOD VIDEO: A function is a rule which operates on one number to give another number. However, not every rule describes a valid function. This unit explains how to see whether a given rule describes a valid function, and introduces some of the mathematical terms associated with functions. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Introduction to Functions - Part 2
IPOD VIDEO: A function is a rule which operates on one number to give another number. However, not every rule describes a valid function. This unit explains how to see whether a given rule describes a valid function, and introduces some of the mathematical terms associated with functions. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Introduction to Functions - Part 3
IPOD VIDEO: A function is a rule which operates on one number to give another number. However, not every rule describes a valid function. This unit explains how to see whether a given rule describes a valid function, and introduces some of the mathematical terms associated with functions. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Introduction to Functions - Part 4
IPOD VIDEO: A function is a rule which operates on one number to give another number. However, not every rule describes a valid function. This unit explains how to see whether a given rule describes a valid function, and introduces some of the mathematical terms associated with functions. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Introduction to Functions - Part 5
IPOD VIDEO: A function is a rule which operates on one number to give another number. However, not every rule describes a valid function. This unit explains how to see whether a given rule describes a valid function, and introduces some of the mathematical terms associated with functions. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Introduction to Functions - Part 6
IPOD VIDEO: A function is a rule which operates on one number to give another number. However, not every rule describes a valid function. This unit explains how to see whether a given rule describes a valid function, and introduces some of the mathematical terms associated with functions. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Equations of a straight line
In this unit we find the equation of a straight line, when we are given some information about the line. The information could be the value of its gradient, together with the co-ordinates of a point on the line. Alternatively, the information might be the co-ordinates of two different points on the line. There are several different ways of expressing the final equation, and some are more general than others. (Mathtutor Video Tutorials) This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Equations of a Straight Line Part 1
IPOD VIDEO: In this unit we find the equation of a straight line, when we are given some information about the line. The information could be the value of its gradient, together with the co-ordinates of a point on the line. Alternatively, the information might be the co-ordinates of two different points on the line. There are several different ways of expressing the final equation, and some are more general than others. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Equations of a Straight Line Part 2
IPOD VIDEO: In this unit we find the equation of a straight line, when we are given some information about the line. The information could be the value of its gradient, together with the co-ordinates of a point on the line. Alternatively, the information might be the co-ordinates of two different points on the line. There are several different ways of expressing the final equation, and some are more general than others. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Equations of a Straight Line Part 3
IPOD VIDEO: In this unit we find the equation of a straight line, when we are given some information about the line. The information could be the value of its gradient, together with the co-ordinates of a point on the line. Alternatively, the information might be the co-ordinates of two different points on the line. There are several different ways of expressing the final equation, and some are more general than others. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Equations of a Straight Line Part 4
IPOD VIDEO: In this unit we find the equation of a straight line, when we are given some information about the line. The information could be the value of its gradient, together with the co-ordinates of a point on the line. Alternatively, the information might be the co-ordinates of two different points on the line. There are several different ways of expressing the final equation, and some are more general than others. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.
Resource type Equations of a Straight Line Part 5
IPOD VIDEO: In this unit we find the equation of a straight line, when we are given some information about the line. The information could be the value of its gradient, together with the co-ordinates of a point on the line. Alternatively, the information might be the co-ordinates of two different points on the line. There are several different ways of expressing the final equation, and some are more general than others. This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.