Search by entering one or more keywords or a phrase in quotes.
Search results
Your search returned 832 results

This unit explain integration as the reverse of differentiation. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This unit explain integration as the reverse of differentiation. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A special rule, integration by parts, is available for integrating
products of two functions. This unit derives and illustrates this rule with a
number of examples.

A special rule, integration by parts, is available for integrating
products of two functions. This unit derives and illustrates this rule with a
number of examples. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A special rule, integration by parts, is available for integrating
products of two functions. This unit derives and illustrates this rule with a
number of examples. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

There are occasions when it is possible to perform an apparently difficult piece of integration by first making a
substitution. This has the effect of changing the variable and the integrand. When dealing with definite integrals,
the limits of integration can also change.
In this unit we will meet several examples of integrals where it is appropriate to make a substitution. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

There are occasions when it is possible to perform an apparently difficult piece of integration by first making a
substitution. This has the effect of changing the variable and the integrand. When dealing with definite integrals,
the limits of integration can also change.
In this unit we will meet several examples of integrals where it is appropriate to make a substitution. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

Overview of the rules of integration and their applications in Economics and Business Studies. This leaflet has been contributed to the mathcentre Community Project by Morgiane Richard (University of Aberdeen) and reviewed by Anthony Cronin (University College Dublin).

Latex source, image files and metadata for the Fact & Formulae leaflet "Integration for Economics and Business Studies " contributed to the mathcentre Community Project by Morgiane Richard (University of Aberdeen) and reviewed by Anthony Cronin (University College Dublin).

This unit is concerned with integrals which lead to logarithms.
Whenever the integrand is fraction with denominator f(x) and numerator f'(x)
the result of integrating is the natural logarithm of f(x). This unit illustrates this
behaviour with several examples. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This unit is concerned with integrals which lead to logarithms.
Whenever the integrand is fraction with denominator f(x) and numerator f'(x)
the result of integrating is the natural logarithm of f(x). This unit illustrates this
behaviour with several examples. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

The derivative of ln x is 1/x. As a consequence, if we reverse
the process, the integral of 1/x is ln x+c. In this unit we
generalise this result and see how a wide variety of integrals result in
logarithm functions.

We may regard integration as the reverse of differentiation. So if we have
a table of derivatives, we can read it backwards as a table of
anti-derivatives. When we do this, we often need to deal with constants
which arise in the process of differentiation.

We may regard integration as the reverse of differentiation. So if we have a table of derivatives, we can read it backwards as a table of anti-derivatives. When we do this, we often need to deal with constants
which arise in the process of Differentiation. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

We may regard integration as the reverse of differentiation. So if we have a table of derivatives, we can read it backwards as a table of anti-derivatives. When we do this, we often need to deal with constants
which arise in the process of Differentiation. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

In this unit we are going to look at how we can integrate some more algebraic fractions. We shall concentrate on the case where the denominator of the fraction involves an irreducible quadratic factor. The case where all the factors of the denominator are linear has been covered in the first unit on integration using partial fractions.

This unit explains how trig identities and trig substitutions can help when finding integrals. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This unit explains how trig identities and trig substitutions can help when finding integrals. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This document summarises some main mathematical ideas that you will probably
see in the first year of any economics degree course. The hot links allow you to
select questions, each randomised and with full feedback so you can ‘get your hands
dirty’ and reinforce your understanding. You are encouraged to make good use of
these links and to retain this document as a handy summary for revision. You/your
teacher is free to edit it as required. You will find questions on additional topics in
economics, as well as most of the underlying mathematical techniques, in the maths e.g. database.

The project Developing Graduate Skills in HE Mathematics Programmes collected a series of short case studies, each focused on specific graduate skills, providing examples of ways in which these have been successfully developed through curricular initiatives. This video is the introduction to a workshop disseminating the case study report by Jeff Waldock. This video is not made available under a Creative Commons licence but is freely available to UK universities for non-commerical educational use.

This leaflet provides a rough and ready introduction to differentiation. This is a technique used to calculate the gradient, or slope, of a graph at different points.

This leaflet provides a rough and ready introduction to differentiation and gives some common terminology and notation. (Engineering Maths First Aid Kit 8.1) There is an accompanying podcast.

Podcast to accompany the Quick Reference Engineering Maths First Aid Kit leaflet 'Introduction to differentiation 8.1' submitted under Creative Commons Licence BY-NC-SA to the mathcentre Community Project by Ciaran Mac an Bhaird, National University of Ireland Maynooth and reviewed by Ann O'Shea, National University of Ireland Maynooth.

Podcast to accompany the Quick Reference Engineering Maths First Aid Kit leaflet 'Introduction to differentiation 8.1' submitted under Creative Commons Licence BY-NC-SA to the mathcentre Community Project by Ciaran Mac an Bhaird, National University of Ireland Maynooth and reviewed by Ann O'Shea, National University of Ireland Maynooth.

A function is a rule which operates on one number to give another number.
However, not every rule describes a valid function. This unit explains
how to see whether a given rule describes a valid function, and introduces
some of the mathematical terms associated with functions.

A function is a rule which operates on one number to give another number.
However, not every rule describes a valid function. This unit explains
how to see whether a given rule describes a valid function, and introduces
some of the mathematical terms associated with functions. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.