Search by entering one or more keywords or a phrase in quotes.
Search results
Your search returned 832 results

This mobile phone video shows how the imaginary number i can be used in the solution of some quadratic equations. Sigma resource Unit 2.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by mathcentre.

This video shows how the imaginary number i can be used in the solution of some quadratic equations. Sigma resource Unit 2.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by mathcentre.

This leaflet introduces the concepts of impact and momentum.

Sometimes functions are given not in the form y=f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x.. Such functions are called implicit functions. In this unit we explain how these can be differentiated using implicit differentiation. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

Sometimes functions are given not in the form y=f(x) but in a more complicated form in which it is difficult or impossible to express y explicitly in terms of x.. Such functions are called implicit functions. In this unit we explain how these can be differentiated using implicit differentiation. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This article presents a novel approach to maths support designed and adopted by the University of Lincoln, School of Engineering, to bridge this transition gap for students, offer continued support through Assessment for Learning and Individual Learning Plans, and ultimately increase student achievement, engagement and retention. The article then extends this proven approach and discusses recently implemented enhancements through the use of online diagnostic testing and a ‘student expert’ system to harness mathematical knowledge held by those gifted and talented students (often overlooked by higher education institutions) and to promote peer-to-peer mentoring. The article shows that with the proven system in place, there is a marked increase in student retention compared with national benchmark data, and an increase in student engagement and achievement measured through student feedback and assessments.
M. Gallimore and J. Stewart, (2014) Increasing the impact of mathematics support on aiding student
transition in higher education., Teaching Mathematics Applications, 33 (2), 98-109, doi:10.1093/teamat/hru008

This is a complete workbook on Indices covering definitions, rules and lots of examples and exercises.
It can be used as a free-standing resource, or can be read in conjunction with mathtutor - the companion on-disk resource.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

A knowledge of powers, or indices as they are often called, is essential for an understanding of most algebraic processes. In this section you will learn about powers and rules for manipulating them through a number of worked examples.
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

This project engaged with an industrial/business partner, a large food manufacturer in the south west, in order to bring their data and associated problems into the HE curriculum. It identified real problems they had with quality control of raw and cooked ingredients in a selected range of their products. These problems were solvable using data interrogation, graphical and statistical modelling methods. The company made available a large amount of real data they routinely collect during their production processes. This report gives details about the project and the created resources. This report was written by Neville Davies and John Marriott. This report is not made available under a Creative Commons licence but is freely available to UK universities for non-commerical educational use.

Sometimes the integral of an algebraic fraction can be found by first
expressing the algebraic fraction as the sum of its partial fractions. In this
unit we will illustrate this idea. We will see that it is also necessary to
draw upon a wide variety of other techniques such as completing the square,
integration by substitution, using standard forms, and so on. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

Sometimes the integral of an algebraic fraction can be found by first
expressing the algebraic fraction as the sum of its partial fractions. In this
unit we will illustrate this idea. We will see that it is also necessary to
draw upon a wide variety of other techniques such as completing the square,
integration by substitution, using standard forms, and so on. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

Sometimes the integral of an algebraic fraction can be found by first
expressing the algebraic fraction as the sum of its partial fractions. In this
unit we look at the case where the denominator of the fraction involves an
irreducible quadratic expression. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

Sometimes the integral of an algebraic fraction can be found by first
expressing the algebraic fraction as the sum of its partial fractions. In this
unit we look at the case where the denominator of the fraction involves an
irreducible quadratic expression. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

The second major component of the Calculus is called integration. This
may be introduced as a means of finding areas using summation and limits. We
shall adopt this approach in the present Unit. In later units, we shall also
see how integration may be related to differentiation. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

The second major component of the Calculus is called integration. This
may be introduced as a means of finding areas using summation and limits. We
shall adopt this approach in the present Unit. In later units, we shall also
see how integration may be related to differentiation. (Mathtutor Video Tutorial)
The video is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.

An integral is defined as an infinite sum. This leaflet explains how this is done. This notion is important when we want to apply integration in many fields. (Engineering Maths First Aid Kit 8.12)

This unit explain integration as the reverse of differentiation. (Mathtutor Video Tutorial)
This resource is released under a Creative Commons license Attribution-Non-Commercial-No Derivative Works and the copyright is held by Skillbank Solutions Ltd.