Functions of a complex variable

Derivative: If w = f(z) where z and w are complex
numbers, the derivative ‘(1—'; at zp is

o f(z) = f(z0)
fz0) = 1m [2_720]

provided that the llmlt cxmts as z — zp along any path.
If f(z) has a derivative at a point zp and at all points
in some neighbourhood of zy then f(z) is said to be
analytic at zg. If f(z) is analytic at all points in an
(open) region R then f(z) is said to be analytic in R.

Cauchy-Riemann equations: If 2 = = + jy and w =
flz) = ulz,y) + jv(x,y) where x, y, u and v are real
variables, and f(z) is analytic in some region R of the
z plane, then the Cauchy-Riemann equations hold
throughout R:

du _ Ov Ju _(’)v
dr  dy dy  dx’

If these partial derivatives are continuous within R, the
Cauchy-Riemann equations are sufficient conditions to
ensure f(z) is analytic. Furthermore, f'(z) = g—‘: +z%
Singularities: If f(z) fails to be analytic at a point zg
but is analytic at some point in every neighbourhood of
zo then zp is called a singular point of f(z).

Laurent series: If f(z) is analytic on concentric circles
Cy and C5 of radii 1 and r2, centred at zp, and also
analytic throughout the annular region between the cir-
cles, then for each point z within the annulus, f(z) may

be represented by the Laurent series
o0

fz)= > calz—2)"

in which ¢, are ('.omplg)? constants. The series may be
written ~1 o
f)= > enlz—20)"+ > enlz— 20)"

n=—oc n=0
Poles: The first sum on the right is the principal
part. If there are only a finite number of terms in the
principal part e.g.

Cem C—1
fz) = (z — zo)™ + (Z — z0)

+eotea(z—z0)+...+em(z—20)" +...

in which ¢, # 0, then f(z) has a singularity called a
pole of order m at z = z;. A pole of order 1 is called
a simple pole. If there are infinitely many terms in
the principal part, zy is called an isolated essential
singularity. If the principal part is zero, then f(z) has
a removable singularity at z = z; and the Laurent
series reduces to a Taylor series.
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Residues: If f(z) has a pole at z = zy then the coef-
ficient, ¢_q, of in the Laurent expansion is called
the residue of f zj at z = zg. The residue at a pole of
order m is given by:

1 am™ 1 _—
(' - ])- zl—-..n {d'ﬂ” 1 [[Z — zo) f(A”} .

When evaluating the integrals which follow, the curve C
is traversed in an anticlockwise sense.

Cauchy’s theorem: If f(z) is analytic within and on a
simple closed curve C then f. f(z)dz = 0.

Cauchy’s integral formula: If f(z) is analytic within
and on a simple closed curve ', and if zy is any point
within C then

f(z)

oA

f (Ldz = Qﬂiljfvd{zﬂ}_
Jo -

= Z[])“+]

The residue theorem: If f(z) is analytic within and on
a simple closed curve C' apart from a finite number of
poles inside ', then

(lz = 2mj f(z0).
Further

?§ f(z)dz = 27j x [ sum of residues
SO

of f(z) at the poles inside C1.

Eigenvalues & Eigenvectors

An eigenvector of a square matrix A is a non-zero col-
umn vector X such that AX = A X where A, (a scalar),
is the corresponding eigenvalue. 'The eigenvalues are
found by solving the characteristic equation

det(A — AT) = 0.

An n x n symmetric matrix A with real elements has
only real eigenvalues and n independent eigenvectors.
The eigenvectors corresponding to distinct eigenvalues
of a real symmetric matrix are orthogonal.

The modal matrix corresponding to the n x n square
matrix A is an n x n square matrix P whose columns
are the eigenvectors of A. If n independent eigenvectors
are used to form P then P~'AP is a diagonal matrix
in which the diagonal entries are the eigenvalues of A
taken in the same order that the eigenvectors were taken
to form P.
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Vector Calculus

grad =V div=V- curl = Vx
.0 L d 17
V= IE +Ja + k()_“’
2 o2 o2
Laplacian = V> = div(grad) = V.V = L+i-+— o

dr?  dy? 022

If ®(x,y, z) is ascalar field and v(z, y, z) = v1i+vejt+uvsk
is a vector field

ab,  db, 9P

grad @ = VP = d_ i+ E t s —k a vector.
duy ()T' dug

a scalar.

divv =V v =

or By | 0z

i J k
el v — — | & 9 9 o wraet e
curlv =V x v =| 4 oy 6: a vector.

i ko] U3
Fe e 9P

da? + y? * az2"

. a? a?
2 — — —
Vive (('7'«1”-2 " ay?

Vip =

0° S
+ @) (v1i + v2j + vsk).

Vector calculus identities:

grad(®) = @ grad ¢ + 1 grad ¢

div (®a) = ¢ diva + a-grad ®

curl (Pa) = ¢ curlatgrad ® x a

curl grad @ = 0, diveurla =0

curlcurl a =grad diva — VZa

grad(a-b) = (b-grad)a+(a-grad) b+bxcurla+axcurl b
div(a x b) = b-curla — a-curl b

curl(a x b) = (b-grad)a — (a-grad)b + adivb — bdiva

Green’s theorem in the plane:

%(Pr_lx—l— Qdy) = / (OQ — (:” )c]:z:dy.
Je S\ 0z Oy

Stokes’ theorem:

é v-dr = / curl v - dS.
Je Js

The divergence theorem:

¢ v-dS = [ divvdV.
Js Jv

Spherical polar coordinates

1e diagram shows spherical polar coordinates (R, 0, ¢).
The diag 1 I I pol linates (R, 0, ¢

= “1?5-;1116'5@‘5 oR

054
R sin / : r 5Sp
A
. 55y
0 :
00
H Ty
)
xTr
r = Rsinf cos o R=0
y = Rsinflsing 0<0<mw
z = Rcosf 0<o¢<2m
If v =wvpeér +wvpey + 'I'.-‘oég-,:
b 1 0d 1 ad
D= "opt =g+ —— b,
V=Rt R 90t Reno 9o°
L9 (p2 1 1 9
Vv =rqaag (B )+H~,1119r)9 (vosinO)+ 2505 04
1 ler Rép Rsinfeé,
Vxv=e— |2 2 2
2 o i a0 s
R®sind vr  Rvg  Rsinfu,
. 1 0 o 0P
Ve = —— R
R2OR ( dR) N

(ve

1 Ié) ( {'J(I)) 1 0?P
— | sinfl— | + —————.

R? sin @ 06 ao R2sin? 0 92
Volume element: 8V = R*sin 038R 60 56.
Surface elements:

5Sp = R%sinf 60 aab.

55y = Rsin00R6), | _
55, = ROR 56, ‘@"’

Solid angles: Consider part of a sphere of radius R.
If the area cut off on the surface is S, the solid angle
at the centre is {1 = % steradians. The solid angle
at the apex of a cone of semi-vertical angle @ is 2 =
2m(1 — cos ).

).

Cylindrical polar coordinates

The diagram shows cylindrical polar coordinates (r, ¢,

= ~
N~ 4 Y
[
xr
T = TCosQ r =0
Yy = rsing 0<¢<2m
z=1z —oo <z <00

If v —=uv.e +vs€y+ v.€.:

0P 1 0P ()d>

d): —_—e, + ——— {.) —_—
Vo= Gt 1% T 5 °
10 10 du.
Vv = ; ar (r?:;-} T T_% (1_.‘__.,) -+ E
e e e
Vxv=_-|2 g 4

r| @ 9 q
U TUp U

10 [ 0d 1 9*¢ 9%

Vo=-—(r— |+ 55+ =5
ror (? fh-) 2 0g2 T 922

Volume element: 6V = rdrdgdz.

Surface elements:

S, =rdpdz,

885, = 0rdz,

A58, = rdrdo.

z).
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Fourier Series

Fourier series:
If f(t) is periodic with period T its Fourier series is given
by

ft) = an + Z (aucos QT;Tt + by sin 21}“)

n=1

or equivalently, if w = 27 /T,

ft) = — 9+ Z @, cos nwt + by, sin nwt).

n=1

a, and b, are called the Fourier coefficients, given by

d+T ert
n = —f T

:1+;
n:_f s 2??7'tdt= forn=1,2,3...

where d can be chosen to have any value.
If f(t) is odd, an =0 and f(t) = >, bn sinnwt.

If f(t) iseven, b, = 0 and f(t) = 2+ 07, an cosnwt.
Parseval’s theorem:

%./D'r(f(t))z au + Z(a’n + bﬁ

n=1

forn=0,1,2,3...

Complex form:
i 2 ;/! Tﬂ i2nwt /T
f(t) = cne??T == / e 92T gy
Tn=—0o0
Half-range sine series: Given f(t) for 0 < t < I, its

odd periodic extension has period T and Fourier series
given by

= 2nmi
= E by, si .
sin T

n=1

4 [T/2 . 2nwt .
b"_f-/o f(t)sin T dt forn=1,2,3...

Half-range cosine series: Given f(t) for 0 <t < 7—2", its
even periodic extension has period 7" and Fourier series

given by
o0
_ap 2nwt
t) = > + Z @ COS

n=1

4 /Tﬂ 2nmt
an = = f(t)cos
T Jo

dt forn=0,1,2,3...

The Fourier transform
The Fourier transform of f(t) is F(w) defined by

FUOY = [ 10 at = Fo).
The inverse Fourier transform is given by

FYF(w)} = % /_x F(w)e™ dw = f(t).

function f(t) Fourier transform F(w)
Au(t)e ", a >0 “fjw
1 —a<t<a 2sinwao
{ 0 otherwise w
A constant 2w Ad(w)
u(t)A A (md(w) — i)
4(t) 1
5(t —a) emIwe
cos at m(0(w + a) + d(w — a))
sin at F(0(w—a) —d(w +a))
sgn(t) J%
- —jmsgn(w)
et a>0 Kﬁz_"_—’wf
Linearity:

Ff+gy =F{fr+Flgy,  Flkf} =kF{f}
Shift theorems: If F'(w) is the Fourier transform of f(t)
F{?f(t)} = F(w — a), a constant.

F{f(t —a)} = e 7™ F(w), a constant.
Differentiation: The Fourier transform of the
nth derivative, ™ (t), is (jw)"F(w).
Duality: If F(w) is the Fourier transform of f(t) then
the Fourier transform of F(t) = 2m x f(—w).

Convolution and correlation:
The Fourier transform of f(t) * g(t) is F'(w)G(w) where

$O 90 = [~ gt =N A= g(0)+ 0.
The Fourier transform of f(t)xg(t) is F(w)G(—w) where

OO

FW)xg(t)= [ fNg(A—1t)dA.
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Discrete Fourier transform (dft)

Given a sequence of N terms

{g(0]. g[1],9[2],..., g[N — 1]}

its discrete Fourier transform (dft) is the sequence

{G[0],GN),G2),....GIN —1]}
where
N—1 _
G[k‘] = Z g[:fi.]e_z”'k“/"\"_
n=0
Further
N—1
n] — (W ZJHJ\W/}\'

Maclaurin & Taylor Series

Maclaurin Series:

2 *
f(z) = f( ‘;’—If”(o)+..,+%f("’(0)+...
Taylor series (one variable):

f@) = @)+ E= Dy +

— a)2

S @)+

Lyt ;I”')T F(a) +

Taylor series (two variables): For a function f(z,y) of
two variables

faw) = f@n+ g (@0 + - b}%) f(a.b)

+%({x—a)§x - b)a) fla.b) +

7!

Stationary points in two variables: For z = (a:. Y)s

stationary points (a,b) are located by solving 9 = 0

of 9*f 0% f 9%f\*
and == = 0. Define A = % —5 — at (a,b).
ANC y e 922 9y° 20y at (a,
The type of stationary point is given by:

A <O saddle point.

o*f - .
A>0and - >0 minimum point.
Oz
a*f . .
A >0and - <0 maximum point.
Oz



The Laplace transform
The Laplace transform of f(t) is F(s) defined by

o0
F(s) = LU0} = [ e o
Jo
function f(t),t = 0 Laplace transform F(s)
t" I\J-FT‘"!'I
eu.f 1
q—da
n_—at n!
e Fa)FT
sin bt :Q%E
cos bt m
sinh bt ?—’E_b’—’
cosh bt s
" 2bs
t sin bt m
S s2—b2
t cos bt GrnT
u(t) unit step 1
4(t) impulse function 1
6(t —a) e ¢
T =7
f(t) periodic f“l‘T_‘r,{;ﬁ
t"f(t) (—1)" L2 F(s)
Linearity:

L{f +9} = L{f} + L{o},  L{kf} =kL{f}.
Shift theorems: If £{f(f)} = F(s) then
Lle ™ f(t)} = F(s + a).

L{u(t —d)f(t—d)} =e *"F(s) d>0.

u(t) is the unit step or Heaviside function.
Laplace transform of derivatives and integrals:
L{f'} = sF(s) — £(0).
L{f"} = $F(s) - s(0) - £(0).

c { /nE f(t)dt} _ %F(s).

The convolution theorem:
The Laplace transform of f(t) * g(t) is F(s)G(s) where

F(8) #g(t) = j F(t = N)g(A) dX = g(t) = £(2).

The z transform

Given a sequence, f[k], k=0,1,2..., the (one-sided)
z transform of f[k], is F(z) defined by

F(z) = Z{fIK} = 3 flk=""
k=0
sequence f[k] z transform F(z)
‘ 1 k=0
S[k] = 1
0 k#0
1 k>0 ;
Lt.[k] = n z=1
0 k<0
(«‘-—;1}2
—ak =
a ziu
kak (:.i::l}E
k;2 z(z+1)
=-1)°
sin ak 72%
cos ak Z%
e ** gin bk Z?%Tm‘—u
e " cos bk ?2_”2:;.—”;—:“::;:'—2?
e T F K] F(e’z)
kf[k] —25:F(2)

Linearity: If f[k] and g[k] are two sequences and ¢ is a
constant

Z{f[k] + glk]} = Z{f[k]} + Z{g[k]}.
Z{cf[K]} = cZ{f[K]}.
First shift theorem:
Z{flk+ 1]} = 2F(z) — zf[0].
Z{f[k+2]} = 2°F(2) — 2°f[0] — zf[1].
Second shift theorem:
Z{flk —ilulk —i]} = 2 'F(z), i=1,2,3...

where F(z) is the z transform of f[k] and u[k] is the unit
step sequence.

Convolution: Z{f[k] x g[k]} = F(2)G(z).

where

Flk) * glk) = 3~ flmlglk —m].

m=0

Numerical Integration

Simpson’s rule: for n even, and h = 2—*0_

[;E,k flx)de = %(fu +4fi +2f2 +4f5+

oot 2 ez + Afno1 4 fn).

. w0y — gt )
Truncation error =~ —%A

n point Gauss-Legendre formula:

/_1 flz)dz ~ Zwif(a:a-).

n il wi
2 40.577350  1.000000
3 £0.774597  0.555556
0.0  0.888889

4 +£0.861136 0.347855
+0.339981  0.652145
+0.906180  0.236927
0.0  0.568889
+0.538469  0.478629

o

Ordinary differential equations
dy
To solve e (z,y) :
Euler’s method:
Yr41 = Yr + hf(:rn Yr).
Modified Euler method:

Y =yt 0L S0 = flaen, yh).

e h
19‘}-421 =yr+ §{fr + f:(-i)l)‘
Runge-Kutta method:

I k
k]- = h‘f(wf‘? y'i‘)-: k‘) = h'f(-'ﬂf‘ + %eyr + ?1}.
I k:
ks = hf(z, + %y + f), ki = hf(zr + b, yr + k).

1
Yrp1 = Yr + 6 (kl + 2ko + 2k3 + ka).
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