Equations Warm-up: Rules for manipulating equations

Learning objectives:

3.A.3. to be able to rearrange equations using the following rules:

add or subtract the same thing to both sides	if $\quad a=b$ then $\mathrm{a}+\mathrm{c}=\mathrm{b}+\mathrm{c}$
multiply or divide both sides by the same thing	if $\quad a=b$ then $a \mathbf{x c}=b \mathbf{x c}$
replace any term or expression by another equal expression	if $\quad a+b=c$ and $b=d \times e$ then $a+(d x e)=c$
square or square root both sides	if $a+b=c$ then $(a+b)^{2}=c^{2}$ also if $\quad a^{2}=\frac{b}{c}$ then $\quad a=\sqrt{\frac{b}{c}}$
expand out an equation	$\begin{array}{ll} & y(a+x)=1 \\ \text { becomes } & y a+y x=1 \end{array}$
simplify (factorise)	$a b+a c=a(b+c)$

3A3: Manipulating equations

Now use these rules to answer the following questions.

You may want to think about some of these tips.

When rearranging an equation, don't be afraid to use a lot of small steps and write down every step.

Sometimes it isn't at all clear how best to proceed - just start, remembering what it is that you need to make the subject of the equation - and eventually you will get there. There can be a lot of different ways of doing it.

Brackets are useful because you can move the whole term (ie what is inside the brackets) around as if it is a single item.

Questions:

Q1. Consider the equation $v=u+a t$. Make a the subject of the equation.
Q2. Rearrange $s=u t+1 / 2$ at ${ }^{2}$ to make a the subject of the equation.
Q3. Rearrange $v=\sqrt{\frac{m}{p}}$ to make p the subject
Q4. Rearrange $F=\frac{L}{4 \pi d^{2}}$ to make d the subject.
Q5. Rearrange $y=\frac{1}{1+x}$ to make x the subject.
Q6. If $V=\frac{C}{k}$ and $k=\frac{0.69}{t}$, write an equation for V in terms of C and t .
Q7. Drugs in the blood can be bound to plasma proteins and/or free in solution, in practice there is an equilibrium whereby $\mathrm{C}_{\text {free }}+$ protein $\left\langle-->\mathrm{C}_{\text {bound }}\right.$.
The percentage of drug bound is given by $b=100 \frac{C_{\text {bound }}}{C_{\text {total }}}$ where $\mathrm{C}_{\text {total }}=\mathrm{C}_{\text {bound }}+\mathrm{C}_{\text {free }}$

The fraction of drug in plasma that is free is given by $f=\frac{C_{\text {free }}}{C_{\text {total }}}$.
Express f as a function of b.
Q8. Rewrite the following so that the brackets are removed. $(a-2)(b-3)=0$
Q9. Rewrite the following so that the brackets are removed. $(x+3 y+2)(x-3)=0$
Q10. Factorise $3 x^{2}-x$

3A3: Manipulating equations

Q11. Factorise the following expression: $25-y^{2}$
Q12. In pharmacology, the proportion of receptors bound with drug D is given by eqn 1 . eqn 1. proportionbound $=\frac{D K}{D K+1} \quad$ (K is the affinity constant.) when a competing drug B is added, a higher concentration of drug D^{1} is given to get the same number of receptors bound with drug D.
eqn 2. proportionbound $=\frac{D^{1} K}{D^{1} K+B K_{B}+1} \quad\left(\mathrm{~K}_{\mathrm{B}}\right.$ is the affinity constant for drug B$)$
since the proportion bound is the same in eqn 1 and eqn 2 we can make the right hand side of eqn 1 equal to the right hand side of eqn 2.
$\frac{D K}{D K+1}=\frac{D^{1} K}{D^{1} K+B K_{B}+1}$
Simplify this as much as possible, getting D^{1} as a function of B.

Answers:

A1.

start		$v=u+a t$
Step 1.	You want to get a on its own on the left. So start by reversing it.	$u+a t=v$
Step 2.	You want a to be on its own so start by subtracting u from both sides	$u-u+a t=v-u$ $a t=v-u$
Step 3.	To get a on its own, you have to divide both sides by t.	$a=\frac{v}{t}-\frac{u}{t}=\frac{(v-u)}{t}$

A2.

Step 1.	You want to get a on its own on the left. So start by reversing it.	$u t+1 / 2 a t^{2}=s$				
Step 2.	You want a to be on its own so start by subtracting ut from both sides	$u t-u t+1 / 2 a t^{2}=s-u t$				
$1 / 2 a t^{2}=s-u t$			$	$	$a t^{2}=2(s-u t)$	
:---	:---					
Step 3.	To get a on its own, you have to multiply both sides by 2 then divide both sides by t					
	$\frac{a t^{2}}{t^{2}=\frac{2(s-u t))}{t^{2}}}$					
$a=\frac{2(s-u t))}{t^{2}}$						

3A3: Manipulating equations

A3.

Step 1.	Start by squaring both sides.	$v^{2}=\frac{m}{p}$
Step 2.	You want p to be on the left, so multiply both sides by p.	$p v^{2}=\frac{m}{p} \times p$ $p v^{2}=m$
Step 3.	Now divide both sides by v^{2}	$p=\frac{m}{v^{2}}$

A4.

Step 1.	You need to get d ${ }^{2}$ off the bottom. To do this multiply both sides by $4 \pi d^{2}$	$4 \pi d^{2} F=\frac{L}{4 \pi d^{2}} \times 4 \pi d^{2}$ $4 \pi d^{2} F=L$
Step 2.	Now to leave d^{2} on its own, divide both sides by 4mF	$\frac{4 \pi d^{2} F}{4 \pi F}=\frac{L}{4 \pi F}$ $d^{2}=\frac{L}{4 \pi F}$
Step 3.	Now square-root both sides.	$d=\sqrt{\frac{L}{4 \pi F}}$

A5.

Step 1.	You need to get ($1+x$) off the bottom. To do this multiply both sides by ($1+x$) Here you are treating what's inside the brackets $(1+x)$ as a single term.	$\begin{aligned} & y(1+x)=\frac{1}{(1+x)} \times(1+x) \\ & y(1+x)=1 \end{aligned}$
Step 2.	You want to get x on its own, so expand out the brackets.	$y+x y=1$
Step 3.	Now subtract y from both sides to leave xy on the left on its own.	$x y=1-y$
Step 4.	Now to get x on its own, divide both sides by y.	$\begin{aligned} & \frac{x y}{y}=\frac{1}{y}-\frac{y}{y} \\ & x=\frac{1}{y}-1 \end{aligned}$ or $x=\frac{1-y}{y}$ these last two expressions are equivalent.

3A3: Manipulating equations

A6. $V=C \times \frac{t}{0.69}=\frac{C t}{0.69}$

A7. $\mathrm{C}_{\text {total }}=\mathrm{C}_{\text {bound }}+\mathrm{C}_{\text {free }}$
rearranging: $\mathrm{C}_{\text {free }}=\mathrm{C}_{\text {total }}-\mathrm{C}_{\text {bound }}$
$f=\frac{C_{\text {free }}}{C_{\text {total }}}$
$f=\frac{C_{\text {total }}}{C_{\text {total }}}-\frac{C_{\text {bound }}}{C_{\text {total }}}$
$f=1-\frac{C_{\text {bound }}}{C_{\text {total }}}$
$f=1-\frac{b}{100}$

A8.

Step 1.	This is our starting point.	$(a-2)(b-3)=0$
Step 2.	You have to multiply each term in the first bracket by each term in the second bracket.	$\mathrm{ab}-2 \mathrm{~b}-3 \mathrm{a}+6=0$

A9.

Step 1.	This is our starting point.	$(x+3 y+2)(x-3)=0$
Step 2.	You have to multiply each term in the first bracket by each term in the second bracket.	$x^{2}+3 x y+2 x-3 x-9 y-6=0$
Step 3.	Then collect similar terms together.	$x^{2}+3 x y+2 x-3 x-9 y-6=0$ $x^{2}+3 x y-x-9 y-6=0$

A10. The term "factorise" means to find the terms which were multiplied together to give this. In this case you can take x out of both terms

$$
3 x^{2}-x=x(3 x-1)
$$

A11. Here you have to remember that the difference of two square numbers is the same as the product of their sum and difference i.e. $25-y^{2}=(5-y)(5+y)$

3A3: Manipulating equations

A12.

Step 1.	This is our starting point. Our aim is to get all terms with D^{1} on the left and all terms with B in them on the right.	$\frac{D K}{D K+1}=\frac{D^{1} K}{D^{1} K+B K_{B}+1}$
Step 2.	In order to move things around we need to get them off the bottom (denominator to use the technical). Start by multiplying both sides by (DK+1). (OK so it doesn't look a lot better but just wait...)	$\begin{aligned} & \frac{D K}{(D K+1)} \times(D K+1)=\frac{D^{1} K}{D^{1} K+B K_{B}+1} \times(D K+1) \\ & D K=\frac{\left(D^{1} K\right)(D K)+\left(D^{1} K\right)}{D^{1} K+B K_{B}+1} \end{aligned}$
Step 3.	Now multiply both sides by $\left(D^{1} K+B K_{B}+1\right)$ l've used brackets strategically so that I can see it more easily otherwise it can look like a real mess. Setting things out clearly is really important here.	$\begin{aligned} & D K\left(D^{1} K+B K_{B}+1\right)=\left(D^{1} K\right)(D K)+\left(D^{1} K\right) \\ & (D K)\left(D^{1} K\right)+(D K)\left(B K_{B}\right)+D K=\left(D^{1} K\right)(D K)+\left(D^{1} K\right) \end{aligned}$
Step 4.	Now have a look and see what terms appear on both sides. See that $(D K)\left(D^{1} K\right)$ appears on both sides, so you can subtract (DK)(D $\left.{ }^{1} \mathrm{~K}\right)$ from both sides leaving... Which looks much better.	$(D K)\left(D^{1} K\right)+(D K)\left(B K_{B}\right)+D K=(D K)\left(D^{1} K\right)+\left(D^{1} K\right)$ $(D K)\left(B K_{B}\right)+D K=\left(D^{1} K\right)$
Step 5.	Now you have (DK) appearing in both terms on the left hand side. Try simplifying this...	$\mathrm{DK}\left(\mathrm{BK}_{\mathrm{B}}+1\right)=\mathrm{D}^{1} \mathrm{~K}$
Step 6.	Now you can see that you can divide both sides by K which will get rid of the K.	$\begin{aligned} & \mathrm{DK}\left(\mathrm{BK}_{\mathrm{B}}+1\right)=\mathrm{D}^{1} \mathrm{~K} \\ & \mathrm{D}\left(\mathrm{BK}_{\mathrm{B}}+1\right)=\mathrm{D}^{1} \end{aligned}$
Step 7.	If you want to you can divide both sides by D so you have both D and D^{1} on the same side but that is a bit cosmetic.	$\mathrm{BK}_{\mathrm{B}}+1=\mathrm{D}^{1} / \mathrm{D}$

3A3: Manipulating equations

looking back, you started with something not too big, then went through something that looked really quite horrible, then ended up with something quite simple.

