Equations Warm-up: Rules for manipulating equations

Learning objectives:

3.A.3. to be able to rearrange equations using the following rules:

add or subtract the same thing to both sides	if a = b then a + c = b + c
multiply or divide both sides by the same thing	if a = b then a x c = b x c
replace any term or expression by another equal expression	if $a + b = c$ and $b = d x e$ then $a + (d x e) = c$
square or square root both sides	if $a + b = c$ then $(a + b)^2 = c^2$ also if $a^2 = \frac{b}{c}$ then $a = \sqrt{\frac{b}{c}}$
expand out an equation	y(a + x) = 1 becomes $ya + yx = 1$
simplify (factorise)	ab + ac = a(b + c)

3A3: Manipulating equations

Now use these rules to answer the following questions.

You may want to think about some of these tips.

When rearranging an equation, don't be afraid to use a lot of small steps and write down every step.

Sometimes it isn't at all clear how best to proceed – just start, remembering what it is that you need to make the subject of the equation – and eventually you will get there. There can be a lot of different ways of doing it.

Brackets are useful because you can move the whole term (ie what is inside the brackets) around as if it is a single item.

Questions:

- Q1. Consider the equation v = u + at. Make *a* the subject of the equation.
- Q2. Rearrange s = ut + $\frac{1}{2}$ at² to make a the subject of the equation.
- Q3. Rearrange $v = \sqrt{\frac{m}{p}}$ to make p the subject
- Q4. Rearrange $F = \frac{L}{4\pi d^2}$ to make d the subject.
- Q5. Rearrange $y = \frac{1}{1+x}$ to make x the subject.
- Q6. If $V = \frac{C}{k}$ and $k = \frac{0.69}{t}$, write an equation for V in terms of C and t.
- Q7. Drugs in the blood can be bound to plasma proteins and/or free in solution, in practice there is an equilibrium whereby C_{free} + protein <--> C_{bound}.

The percentage of drug bound is given by $b = 100 \frac{C_{bound}}{C_{total}}$ where $C_{total} = C_{bound} + C_{free}$

The fraction of drug in plasma that is free is given by $f = \frac{C_{free}}{C_{total}}$.

Express f as a function of b.

- Q8. Rewrite the following so that the brackets are removed. (a 2)(b 3) = 0
- Q9. Rewrite the following so that the brackets are removed. (x + 3y + 2)(x 3) = 0
- Q10. Factorise $3x^2 x$

Creative Commons Attribution Non-commercial Share Alike Author Dr Jenny A Koenig

3A3: Manipulating equations

- Q11. Factorise the following expression: $25 y^2$
- Q12. In pharmacology, the proportion of receptors bound with drug D is given by eqn 1.

eqn 1. $proportionbound = \frac{DK}{DK+1}$ (K is the affinity constant.) when a competing drug B is added, a higher concentration of drug D¹ is given to get the same number of receptors bound with drug D.

eqn 2. proportionbound = $\frac{D^1 K}{D^1 K + B K_B + 1}$ (K_B is the affinity constant for drug B)

since the proportion bound is the same in eqn 1 and eqn 2 we can make the right hand side of eqn 1 equal to the right hand side of eqn 2.

$$\frac{DK}{DK+1} = \frac{D^1 K}{D^1 K + BK_B + 1}$$

Simplify this as much as possible, getting D¹ as a function of B.

Answers:

Λ4	
AI	

A1.		
start		v = u + at
Step 1.	You want to get a on its own on the left. So start by reversing it.	u + at = v
Step 2.	You want a to be on its own so start by subtracting u from both sides	u - u + at = v - u $at = v - u$
Step 3.	To get a on its own , you have to divide both sides by t.	$a = \frac{v}{t} - \frac{u}{t} = \frac{(v - u)}{t}$

A2.

AZ.		
Step 1.	You want to get a on its own on the left. So start by reversing it.	$ut + \frac{1}{2}at^2 = s$
Step 2.	You want a to be on its own so start by subtracting ut from both sides	$ut - ut + \frac{1}{2}at^{2} = s - ut$ $\frac{1}{2}at^{2} = s - ut$
Step 3.	To get a on its own , you have to multiply both sides by 2	$at^2 = 2(s - ut)$
	then divide both sides by t ²	$\frac{at^2}{t^2} = \frac{2(s-ut)}{t^2}$ $a = \frac{2(s-ut)}{t^2}$
		$a = \frac{1}{t^2}$

A3.		
Step 1.	Start by squaring both sides.	$v^2 = \frac{m}{m}$
		p
Step 2.	You want p to be on the left, so multiply both sides by p.	$pv^{2} = \frac{m}{p} \times p$ $pv^{2} = m$
Step 3.	Now divide both sides by v ²	$p = \frac{m}{v^2}$

A4.

AT .		
Step 1.	You need to get d^2 off the bottom. To do this multiply both sides by $4\pi d^2$	$4\pi d^2 F = \frac{L}{4\pi d^2} \times 4\pi d^2$
		$4\pi d^2 F = L$
Step 2.	Now to leave d ² on its own, divide both sides	
	by 4πF	$4\pi d^2 F _ L$
		$\frac{1}{4\pi F} = \frac{1}{4\pi F}$
		$d^2 = \frac{L}{4\pi F}$
Step 3.	Now square-root both sides.	$d = \sqrt{\frac{L}{4 - E}}$
		$\bigvee 4\pi F$

A5.

AJ.		
Step 1.	You need to get (1+x) off the bottom. To do this multiply both sides by (1+x) Here you are treating what's inside the	$y(1+x) = \frac{1}{(1+x)} \times (1+x)$ $y(1+x) = 1$
	brackets (1+x) as a single term.	y(1+x) = 1
Step 2.	You want to get x on its own, so expand out the brackets.	y+xy = 1
Step 3.	Now subtract y from both sides to leave xy on the left on its own.	xy = 1 - y
Step 4.	Now to get x on its own, divide both sides by y.	$\frac{xy}{y} = \frac{1}{y} - \frac{y}{y}$ $x = \frac{1}{y} - 1$ or $x = \frac{1 - y}{y}$
		these last two expressions are equivalent.

A6.
$$V = C \times \frac{t}{0.69} = \frac{Ct}{0.69}$$

A7. $C_{total} = C_{bound} + C_{free}$ rearranging: $C_{free} = C_{total} - C_{bound}$

$$f = \frac{C_{free}}{C_{total}}$$
$$f = \frac{C_{total}}{C_{total}} - \frac{C_{bound}}{C_{total}}$$
$$f = 1 - \frac{C_{bound}}{C_{total}}$$
$$f = 1 - \frac{b}{100}$$

A8.

A0.		
Step 1.	This is our starting point.	(a-2)(b-3) = 0
Step 2.		

A9.

Step 1.	This is our starting point.	(x + 3y + 2)(x - 3) = 0
Step 2.	You have to multiply each term in the first bracket by each term in the second bracket.	$x^2 + 3xy + 2x - 3x - 9y - 6 = 0$
Step 3.	Then collect similar terms together.	$x^{2} + 3xy + 2x - 3x - 9y - 6 = 0$ $x^{2} + 3xy - x - 9y - 6 = 0$

A10. The term "factorise" means to find the terms which were multiplied together to give this. In this case you can take x out of both terms $3x^2 - x = x(3x - 1)$

A11. Here you have to remember that the difference of two square numbers is the same as the product of their sum and difference i.e. $25 - y^2 = (5 - y)(5 + y)$

A12.		
Step 1.	This is our starting point. Our aim is to get all terms with D^1 on the left and all terms with B in them on the right.	$\frac{DK}{DK+1} = \frac{D^1 K}{D^1 K + BK_B + 1}$
Step 2.	In order to move things around we need to get them off the bottom (denominator to use the technical). Start by multiplying both sides by (DK+1). (OK so it doesn't look a lot better but just wait)	$\frac{DK}{(DK+1)} \times (DK+1) = \frac{D^{1}K}{D^{1}K + BK_{B} + 1} \times (DK+1)$ $DK = \frac{(D^{1}K)(DK) + (D^{1}K)}{D^{1}K + BK_{B} + 1}$
Step 3.	Now multiply both sides by $(D^1K + BK_B+1)$ l've used brackets strategically so that I can see it more easily – otherwise it can look like a real mess. Setting things out clearly is really important here.	$DK(D^{1}K + BK_{B} + 1) = (D^{1}K)(DK) + (D^{1}K)$ $(DK)(D^{1}K) + (DK)(BK_{B}) + DK = (D^{1}K)(DK) + (D^{1}K)$
Step 4.	Now have a look and see what terms appear on both sides.	
	See that (DK)(D ¹ K) appears on both sides, so you can subtract (DK)(D ¹ K) from both sides leaving	$(DK)(D^{1}K) + (DK)(BK_{B}) + DK = (DK)(D^{1}K) + (D^{1}K)$ $(DK)(BK_{B}) + DK = (D^{1}K)$
	Which looks much better.	
Step 5.	Now you have (DK) appearing in both terms on the left hand side. Try simplifying this	$DK(BK_{B} + 1) = D^{1}K$
Step 6.	Now you can see that you can divide both sides by K which will get rid of the K.	$DK(BK_B + 1) = D^1K$ $D(BK_B + 1) = D^1$
Step 7.	If you want to you can divide both sides by D so you have both D and D ¹ on the same side but that is a bit cosmetic.	$BK_B + 1 = D^1/D$

3A3: Manipulating equations

looking back, you started with something not too big, then went through something that looked really quite horrible, then ended up with something quite simple.

