Matrix inversion of a 3×3 matrix

The adjoint and inverse of a matrix

In this leaflet we consider how to find the inverse of a 3×3 matrix. Before you work through this leaflet, you will need to know how to find the determinant and cofactors of a 3×3 matrix. If necessary you should refer to previous leaflets in this series which cover these topics.

Here is the matrix A that we saw in the leaflet on finding cofactors and determinants. Alongside, we have assembled the matrix of cofactors of A.

$$A = \begin{pmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{pmatrix} \quad C = \begin{pmatrix} -2 & 3 & 9 \\ 8 & -11 & -34 \\ -5 & 7 & 21 \end{pmatrix}$$

In order to find the inverse of A, we first need to use the matrix of cofactors, C, to create the adjoint of matrix A. The adjoint of A, denoted $\text{adj}(A)$, is the transpose of the matrix of cofactors:

$$\text{adj}(A) = C^T$$

Remember that to find the transpose, the rows and columns are interchanged, so that

$$\text{adj}(A) = C^T = \begin{pmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{pmatrix}$$

Then the formula for the inverse matrix is

$$A^{-1} = \frac{1}{\det(A)} \text{adj}(A)$$

where $\det(A)$ is the determinant of A.

Given a matrix A, its inverse is given by

$$A^{-1} = \frac{1}{\det(A)} \text{adj}(A)$$

where $\det(A)$ is the determinant of A, and $\text{adj}(A)$ is the adjoint of A.

The inverse has the special property that

$$AA^{-1} = A^{-1}A = I$$

(an identity matrix)
Example

Find the inverse of \(A = \begin{pmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{pmatrix} \).

Solution

We already have that \(\text{adj}(A) = \begin{pmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{pmatrix} \).

In an earlier leaflet, the determinant of this matrix \(A \) was found to be 1. So

\[
A^{-1} = \frac{1}{\det(A)} \text{adj}(A) = \frac{1}{1} \begin{pmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{pmatrix} = \begin{pmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{pmatrix}
\]

You should verify this is correct by showing that \(AA^{-1} = A^{-1}A = I \), the \(3 \times 3 \) identity matrix.

Solving a set of simultaneous equations

We now show how the inverse is used to solve the simultaneous equations:

\[
\begin{align*}
7x + 2y + z &= 21 \\
3y - z &= 5 \\
-3x + 4y - 2z &= -1
\end{align*}
\]

In matrix form these equations can be written

\[
\begin{pmatrix} 7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ x \end{pmatrix} = \begin{pmatrix} 21 \\ 5 \\ -1 \end{pmatrix}
\]

Recall that when \(AX = B \), then \(X = A^{-1}B \) so

\[
\begin{pmatrix} x \\ y \\ x \end{pmatrix} = \begin{pmatrix} -2 & 8 & -5 \\ 3 & -11 & 7 \\ 9 & -34 & 21 \end{pmatrix} \begin{pmatrix} 21 \\ 5 \\ -1 \end{pmatrix} = \begin{pmatrix} -42 + 40 + 5 \\ 63 - 55 - 7 \\ 189 - 170 - 21 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}
\]

So \(x = 3, \ y = 1 \) and \(z = -2 \).

These values should be checked by substituting them back into the original equations.

Finally, note that if the determinant of the coefficient matrix \(A \) is zero, then it will be impossible to find the inverse of \(A \), and this method will not be applicable.

Note that a video tutorial covering the content of this leaflet is available from sigma.