Second Order Ordinary Differential Equations

Introduction

Prerequisites: In order to make the most of this resource, you need to know about trigonometry, differentiation, integration and complex numbers.

We are looking at equations involving a function \(y(x) \), its first derivative and second derivative:

\[
 a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = f(x)
\]

(1)

We will only look at equations where the coefficients \(a, b \) and \(c \) are constant; we will not treat in this handout the case of coefficients which are functions of \(x \).

Homogeneous Equations

If \(f(x) = 0 \) then the ODE is called an homogeneous equation. To solve a second order homogeneous ODE, we look at the characteristic equation, obtained by replacing \(\frac{d^2y}{dx^2}, \frac{dy}{dx} \) and \(y \) by \(r^2, r \) and \(1 \) in the ODE:

\[
 ar^2 + br + c = 0
\]

We distinguish between 3 cases: the case when the roots of the characteristic equation are distinct and real, complex or equal.

Case 1: real and distinct roots \(r_1 \) and \(r_2 \)

Then the solutions of the homogeneous equation are of the form:

\[
 y(x) = Ae^{r_1x} + Be^{r_2x}
\]

The constants \(A \) and \(B \) can be anything you like if there are no boundary conditions. If you have boundary conditions, e.g. you know that \(y(x_0) = \alpha \) and \(y'(x_0) = \beta \), then \(A \) and \(B \) will be uniquely defined by:

\[
 Ae^{r_1x_0} + Be^{r_2x_0} = \alpha \\
 Ar_1e^{r_1x_0} + Br_2e^{r_2x_0} = \beta
\]

Example

\[
 \frac{d^2y}{dx^2} + 5 \frac{dy}{dx} + 6y = 0
\]

The characteristic equation is: \(r^2 + 5r + 6 = 0 \) and the roots are \(\frac{-5 \pm \sqrt{25 - 4 \times 6}}{2} = -3 \) or \(-2\). Therefore the solutions of the ODE are:

\[
 y(x) = Ae^{-3x} + Be^{-2x}
\]
Case 2: complex roots

If the roots are complex then they can be written as \(r + js \) and \(r - js \) (with \(j \) the imaginary number, \(j^2 = -1 \)) and the solutions of the homogeneous equations are of the form:

\[
y(x) = e^{rx}(Ae^{jsx} + Be^{-jsx})
\]

which can also be written as:

\[
y(x) = e^{rx}(C\cos(sx) + D\sin(sx))
\]

As before, the constants \(A \) and \(B \) (or \(C \) and \(D \)) will be defined by the boundary conditions.

Example

\[
\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 9y = 0
\]

The characteristic equation is: \(r^2 + 4r + 9 = 0 \) and the roots are:

\[
\frac{-4 \pm \sqrt{16 - 4 \times 9}}{2} = -2 \pm j\sqrt{5}
\]

Therefore the solutions of the ODE are:

\[
y(x) = e^{-2x}(Ae^{j\sqrt{5}x} + Be^{-j\sqrt{5}x})
\]

or

\[
y(x) = e^{-2x}(C\cos(\sqrt{5}x) + D\sin(\sqrt{5}x))
\]

Case 3: equal roots \(r_1 = r_2 = r \)

If the characteristic equation has one root only then the solutions of the homogeneous equation are of the form:

\[
y(x) = Ae^{rx} + Bxe^{rx}
\]

Example

\[
\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0
\]

The characteristic equation is: \(r^2 + 4r + 4 = 0 \) e.g. \((r + 2)^2 = 0 \) and its root is -2. Therefore the solutions of the ODE are:

\[
y(x) = Ae^{-2x} + Bxe^{-2x}
\]

Second Order ODEs with Right-Hand Side

If the right-hand side in Equation (1) is not 0, then the solutions can be found as follows:

- First, find the form of the solution of the corresponding homogeneous equation keeping the constants \(A \) and \(B \) as such: this is called the complementary solution \(y_c(x) \);

- Second, find a particular integral of the ODE \(y_p(x) \).

Then the solutions of the ODE are of the form: \(y(x) = y_c(x) + y_p(x) \). At this point only, you may determine the constants \(A \) and \(B \) from the boundary conditions.

There are two methods to find a particular integral of the ODE: the method of undetermined coefficients and the method of variation of parameters.
Undetermined coefficients

This method consists in making an educated guess as to what the particular integral should look like. The following table can be used:

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>particular integral</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>C</td>
</tr>
<tr>
<td>kx</td>
<td>$Cx + D$</td>
</tr>
<tr>
<td>kx^2</td>
<td>$Cx^2 + Dx + E$</td>
</tr>
<tr>
<td>$k \sin x$ or $k \cos x$</td>
<td>$C \cos x + D \sin x$</td>
</tr>
<tr>
<td>$k \sinh x$ or $k \cosh x$</td>
<td>$C \cosh x + D \sinh x$</td>
</tr>
<tr>
<td>e^{kx}</td>
<td>e^{kx}</td>
</tr>
<tr>
<td>e^{rx}, where r is a root of the characteristic equation</td>
<td>Ce^{rx} or Cx^2e^{rx}</td>
</tr>
</tbody>
</table>

The constants C and D are found by ‘plugging’ the particular integral in the ODE, which will lead to conditions that define C and D.

Example

\[
\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = 2 \sin 4x
\]

We first find the complementary solution of the ODE. The characteristic equation is $r^2 - 5r + 6 = 0$ and the roots are \(\frac{5 \pm \sqrt{25 - 4 \times 6}}{2} = 3 \) or \(2 \). Therefore the complementary solution is:

\[
y_c(x) = Ae^{3x} + Be^{2x}
\]

Then, we find a particular integral of the ODE. Since the right-hand side contains a $\sin 4x$, we look for a particular integral in the form $y_p(x) = C \cos 4x + D \sin 4x$. We want y_p to be solution of the ODE so we must have:

\[
\frac{d^2y_p}{dx^2} - 5 \frac{dy_p}{dx} + 6y_p = 2 \sin 4x
\]

We have:

\[
\frac{dy_p}{dx} = -4C \sin 4x + 4D \cos 4x
\]

\[
\frac{d^2y_p}{dx^2} = -16C \cos 4x - 16D \sin 4x
\]

Putting back in the ODE:

\[
(-16C \cos 4x - 16D \sin 4x) - 5 (-4C \sin 4x + 4D \cos 4x) + 6 (C \cos 4x + D \sin 4x) = 2 \sin 4x
\]

Re-arranging cos and sin:

\[
(-16C - 20D + 6C) \cos 4x + (-16D + 20C + 6D) \sin 4x = 2 \sin 4x
\]

\[
(-10C - 20D) \cos 4x + (-10D + 20C) \sin 4x = 2 \sin 4x
\]

The last equation must be true for any value of x, so we must have:

\[
\begin{cases}
-10C - 20D = 0 \\
20C - 10D = 2
\end{cases}
\]

So:

\[
\begin{align*}
C &= \frac{2}{25} \\
D &= -\frac{1}{25}
\end{align*}
\]
So a particular integral of the ODE is \(y_p(x) = \frac{2}{25} \cos 4x - \frac{1}{25} \sin 4x \) and the general solutions of the ODE are of the form:

\[y(x) = \frac{2}{25} \cos 4x - \frac{1}{25} \sin 4x + Ae^{3x} + Be^{2x} \]

Variation of parameters

This method is more general and will work for any function \(f(x) \) in the right-hand side of Equation (1), although it may look intimidating at first sight! First let's rewrite the complementary solution of the ODE in the form:

\[y_c(x) = Ay_1(x) + By_2(x) \]

with \(y_1(x) = e^{r_1x} \), \(y_2(x) = e^{r_2x} \) or \(xe^{r_1x} \) if \(r_1 = r_2 \) with \(r_1, r_2 \) roots of the characteristic equation

Then a particular integral of Equation (1) is:

\[y_p(x) = -y_1(x) \int \frac{y_2(x)f(x)}{W(y_1, y_2)} \, dx + y_2(x) \int \frac{y_1(x)f(x)}{W(y_1, y_2)} \, dx \]

with \(W \) the Wronskian: \(W(y_1, y_2) = y_1(x)y_2'(x) - y_1'(x)y_2(x) \)

Example

\[\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = \frac{e^x}{x^2 + 1} \]

First, let's find the complementary solution of the ODE. The characteristic equation is \(r^2 - 2r + 1 = 0 \), e.g. \((r - 1)^2 = 0 \), so there is one root which is 1. The complementary solution is of the form:

\[y_c(x) = Ae^x + Bxe^x \]

To find a particular integral of the ODE, we calculate the Wronskian:

with: \(y_1(x) = e^x \) and: \(y_2(x) = xe^x \)

\[W(y_1, y_2) = y_1(x)y_2'(x) - y_1'(x)y_2(x) = e^x(1 + x)e^x - e^xe^x = e^{2x} \]

Then a particular integral of the ODE is:

\[y_p(x) = -e^x \int \frac{xe^x}{e^{2x}x^2 + 1} \, dx + xe^x \int \frac{e^x}{e^{2x}x^2 + 1} \, dx \]

\[\int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \ln (1 + x^2) \quad \text{and} \quad \int \frac{1}{1 + x^2} \, dx = \arctan x \]

\[= -e^x \cdot \frac{1}{2} \ln (1 + x^2) + xe^x \cdot \arctan x \]

The general solution of the ODE is:

\[y(x) = Ae^x + Bxe^x - \frac{1}{2}e^x \ln (1 + x^2) + xe^x \arctan x \]
Exercises

(a) \(\frac{d^2y}{dx^2} + 7y = 0 \)

(b) \(\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-2x} \)

(c) \(3\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - y = 2x - 3 \)

(d) \(\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 2e^{-2x} \) with \(y(0) = 1, \frac{dy}{dx}(0) = -2 \)

(e) \(\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 2\cos^2 x \)

(f) \(\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = 4 \sinh x \)

Answers

(a) \(y = Ae^{\sqrt{7}x} + Be^{-\sqrt{7}x} \) or \(y = C \cos (\sqrt{7}x) + D \sin (\sqrt{7}x) \)

(b) \(y = Ae^{-x} + Bxe^{-x} + e^{-2x} \)

(c) \(y = Ae^x + Be^{-1/3x} - 2x + 7 \)

(d) \(y = e^{-2x}(2 - \cos x) \)

(e) \(y = (A + Bx)e^{-2x} + \frac{1}{4} + \frac{1}{8} \sin (2x) \)

(f) \(y = (A + Bx - x^2)e^{-x} + \frac{1}{2}e^x \)