mathcentre

community project

Mathematical Symbols and Abbreviations

This leaflet provides information on symbols and notation commonly used in mathematics. It is designed to enable further information to be found from resources in mathcentre (www.mathcentre.ac.uk). In the table below, the symbol or notation is given in column one. It is not always obvious how the combination of characters used in mathematical notation is said, so where appropriate this information is given in column two. Column three explains the use of the symbol and an example may be given for further explanation in column four. The last column contains a phrase to be entered as a search topic in mathcentre if further details are required.
Care should be taken as context is important. Identical mathematical symbols and notation are used in different circumstances to convey very different ideas.

Symbol	Say	Means	Example	mathcentre Search Topic	
\sum	sigma	Represents summation	"Sigma notation"		
$\\|$	Parallel	In the same direction as			
$\\|$ (vertical lines, ei- ther side of a num- ber or variable)	Modulus, absolute value	The size of a number, ignoring the sign	$\|3\|=3,\|-3\|=3$		
$\|A\|$	Determinant of matrix A	Determinant of matrix A a straight			
det (A)	Determinant of matrix A	Determinant of matrix A	Modulus		

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

Symbol	Say	Means	Example	mathcentre Search Topic
()	brackets	Used in many different contexts e.g. to show multiplication, to define points, to define functions		"Expanding or removing brackets", "Removing brackets"
\%	Percent, Percentage	Represents a fraction with the denominator of 100	$\frac{25}{100}=25 \%$ ¢	Percentages
\pm	Plus or minus, positive or negative	Represents two numbers, one positive and one negative	± 5 indicates +5 and -5	"Mathematical language"
\pm	Plus or minus, positive or negative	Used to indicate a range	10 ± 2 indicates the range starting from $10-2$ to $10+2$ i.e. $8,9,10,11,12$	"Mathematical language"
π	pi	Represents the ratio of the circumference of a circle to its diameter. $\pi=\frac{\text { circumference }}{\text { diameter }}$	π is equal to 3.14159...	"Substitution \& Formulae"
e		The exponential constant	e is approximately equal to 2.718	"The exponential constant e"
∞	Infinity	Used to represent infinity		

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

Symbol	Say	Means	Example	mathcentre Search Topic
x		Commonly used as a variable		
θ	theta mat	Commonly used as a variable to indicate an angle	Ey orole	See Greek alphabet in "Mathematical language" "Facts \& Formulae Leaflet "
(x, y)	Point $x y$	A point with co-ordinates x and y maths	ort resources	"x-y plots"
$\mathrm{P}(x, y)$	Point $x y$ labeled P	A point P with co-ordinates x and y		"x-y plots"
m		Gradient or slope of a curve		"Equation of a straight line"
c		y-axis intercept or a constant of unknown value e.g. the constant of integration		"Equation of a straight line" "Integration as the reverse of differentiation"
'(dot above a digit)	Recurring	Indicates a digit continues to recur	$0 . \dot{3}=0.3333 \ldots$	Decimals
\dot{x} (dot above variable x)	x dot	Differentiate function x with respect to t (time)		
Superscript	To the power of	A digit or letter placed above and slightly to the right of another digit or letter. Used to indicate multiplications of the same number	$2^{3}=2 \times 2 \times 2$	"Mathematical language", "Indices or powers"
Subscript		A digit or letter placed below and slightly to the right of a letter. Used to distinguish between variables	$x_{1}, x_{2}, x_{3}, \ldots \ldots, x_{m}, x_{n}$	"Mathematical language"

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

Symbol	Say	Means	Example	mathcentre Search Topic
\propto	Proportional to	Proportional to	$y \propto x$ means $y=\mathrm{k} x$ where k is a constant	
<	Less than	Value on the left is less than value on the right	Ey orO\|eCt	Inequalities
\leq	Less than or equal to	Value on the left is less than or equal to value on the right	port resources	Inequalities
>	Greater than	Value on the left is greater than value on the right		Inequalities
\geq	Greater than or equal to	Value on the left is greater than or equal to value on the right		Inequalities
$=$	Equal to	Equal to		
\neq	Not equal to	Not equal to		Mathematical language
\approx	Approximately equal to	Approximately equal to		Mathematical language
\equiv	Equivalent to	Equivalent for all values	$2 x+x \equiv 3 x$, equivalent for all values of x	
\Rightarrow	Implies	Calculations on left of symbol imply those on the right		
\Leftrightarrow	Implies	Calculations on either side of symbol imply those on the other		

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

Symbol	Say	Means	Example	mathcentre Search Topic
\therefore	Therefore	Therefore		
\perp	right angle to, perpendicular to	At 90° to, perpendicular to, normal to	"The gradient of a straight line segment"	
$!$	Factorial	Used to indicate the multiplication of consec- utive whole numbers	$6!=6 \times 5 \times 4 \times 3 \times 2 \times 1$	Factorials
$\log , \log _{b} x$	Log to the base b of x	Logarithm	$\log _{2} 8=3$	Logarithms
\ln	lin	Natural logarithm defined as $\log _{e}$ i.e. loga- rithm to the base e	δx is a small change in the variable x	"Differentiation from first principles"
δ	Represents a small change	Δx is a small change in the variable x		
Δ	delta	Represents a small change	"What is a function?"	
$f(x)$	f to the minus 1 of x	Inverse of function $f(x)$	"Inverse functions"	
$f^{-1}(x)$	x			

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

Symbol	Say	Means	Example	mathcentre Search Topic
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	dee y dee x	Differentiate function y with respect to x	"Differentiation from first principles"	
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	dee 2 squared	dee x	Double differentiate function y with respect to x, second derivative of function y re maths	
$f^{\prime}(x)$	f dash of x	Differentiate function $f(x)$ with respect to x, equivalent to $\frac{d y}{d x}$ if $y=f(x)$	"Differentiation from first principles"	
y^{\prime}	f dauble dash of x	Differentiate function y, equivalent to $\frac{d y}{d x}$ if $y=f(x)$	Differentiate function $f(x)$ with respect to x twice, Second derivative of function $f(x)$	"Differentiation from first principles"
$f^{\prime \prime}(x)$	f triple dash of x	Differentiate function $f(x)$ with respect to x three times, Third derivative of function $f(x)$		
$f^{\prime \prime \prime}(x)$	Integrate f of x dee x	Find the indefinite integral of function $f(x)$ with respect to x	"Integration as summation" "Integration as the reverse of differentiation"	
$\int f(x) d x$				

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

$\int_{a}^{b} f(x) d x$	Integrate f of x dee x between the limits a and b	Find the definite integral of function $f(x)$ with respect to x		"Evaluating definite integrals" "Integration as summation"
$\overrightarrow{A B}, \overrightarrow{A B}$	Vector AB	Vector with direction from point A to point B	y	"Introduction to vectors"
a	Vector a	Vector a		"Introduction to vectors"
\bar{a}	a bar, vector a	Vector a		"Introduction to vectors"
\underline{a}	$\begin{aligned} & a \text { underline, vector } \\ & a \end{aligned}$	Vector a		"Introduction to vectors"
â	a hat	Unit vector in the direction of vector a		"Introduction to vectors"
z^{*}	Complex conjugate of z	Complex conjugate of complex number z, used in the division of complex numbers		"The complex conjugate"
$\sqrt{ }$	Square root	Indicates a square root - a number that may be multiplied by itself to achieve the value shown inside the square root symbol	$\begin{aligned} & \sqrt{9}= \pm 3 \text { as } 3 \times 3=9 \\ & \text { and }-3 \times-3=9 \end{aligned}$	Surds and roots
$\sqrt[3]{ }$	Cube root	Indicates a cube root - a number that may be multiplied by itself three times to achieve the value shown inside the symbol	$\sqrt[3]{8}=2$ as $2 \times 2 \times 2=8$	Surds and roots

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

i		Represents $\sqrt{-1}$ (square root of minus 1) and used interchangeably with j	"Motivating the study of complex numbers"	
\underline{i} or \mathbf{i}		Unit vector in the direction of the positive x-axis	Vectors	
j		Represents $\sqrt{-1}$ (square root of minus 1) and used interchangeably with i, usually by engi- neers	Unit vector in the direction of the positive y-axis	"Motivating the study of complex numbers"
\underline{j} or \mathbf{j}	sine theta	Unit vector in the direction of the positive z-axis	The trigonometric function sine abbreviated as sin	Vectors
\underline{k} or \mathbf{k}	cos theta cosine theta	The trigonometric function cosine abbrevi- ated as cos	Vectors	
$\sin (\theta)$	tan theta	The trigonometric function tangent abbrevi- ated as tan	"Trigonometric functions"	
$\cos (\theta)$	$\tan (\theta)$		"Trigonometric functions"	

mathcentre

community project

Mathematical Symbols and Abbreviations (continued)

$\operatorname{cosec}(\theta)$	cosec theta	The trigonometric function cosecant abbreviated as cosec and defined as $\frac{1}{\sin (\theta)}$		Cosecant
$\sec (\theta)$	sec theta	The trigonometric function secant abbreviated as sec and defined as $\frac{1}{\cos (\theta)}$	Ly	Secant
$\cot (\theta)$	cot theta	The trigonometric function cotangent abbreviated as cot and defined as $\frac{1}{\tan (\theta)}$		Cotangent
$\sin ^{-1}(x)$	sine to the minus 1 of x	$\begin{aligned} & \theta=\sin ^{-1}(x) \text { is the inverse of function } \\ & x=\sin (\theta) \end{aligned}$		"Trigonometric functions"
$\cos ^{-1}(x)$	cos to the minus 1 of x	$\begin{aligned} & \theta=\cos ^{-1}(x) \text { is the inverse of function } \\ & x=\cos (\theta) \end{aligned}$		"Trigonometric functions"
$\tan ^{-1}(x)$	tan to the minus 1 of x	$\theta=\tan ^{-1}(x)$ is the inverse of function $x=\tan (\theta)$		"Trigonometric functions"
d.p	Decimal places	Indicates the number of decimal places after the decimal point to which a number should be rounded	$12.357=12.36$ (2d.p)	Decimals
s.f	Significant figures	Indicates how a number should be displayed by stating the number of non-zero digits that should be shown counting from the left	$\begin{aligned} & 0.05653=0.06 \text { (1s.f) } \\ & 0.05653=0.0565 \text { (3s.f) } \end{aligned}$	Decimals

