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Suppose f(t) is a function of time defined for t ≥ 0. Its Laplace Transform, which has a wide range
of applications in engineering, is the function F (s) of a new variable s defined by

L(f) = F (s) =

∫
∞

0

f(t)e−st dt

This note reviews the techniques of integration needed to find and manipulate Laplace Transforms.

Powers

Example If f(t) = t then

F (s) = L(t) =

∫
∞

0

te−st dt

=

[

t ×
−1

s
e−st

]t=∞

t=0
︸ ︷︷ ︸

= 0 for t = 0 and t = ∞

−

∫
∞

0

1 ×
−1

s
e−st dt integrating by parts

= −

[
1

s2
e−st

]t=∞

t=0

integrating again, noting three minus signs

=
1

s2
substituting limits t = ∞ and t = 0

Exercise Use integration by parts to show that L (t2) = (2/s) × L(t). Generalise this to L (tn).

Exponential and trigonometric functions

Example

L
(
e−at

)
=

∫
∞

0

e−ate−st dt =

∫
∞

0

e−(s+a)t dt =

[

−
1

s + a
e−(s+a)t

]t=∞

t=0

=
1

s + a

This example with a = −jω can be used to find L(cos ωt) and L(sin ωt):

L (ejωt) =
1

s − jω
=

s + jω

(s + jω)(s − jω)
to make the denominator real

=
s + jω

s2 + ω2
=

s

s2 + ω2
+ j

ω

s2 + ω2

Exercise Compare the imaginary parts of Euler’s formula cos(ωt) + j sin(ωt) = ejωt and the final
expression here to show that L(sin(ωt)) = ω/(s2 + ω2). What is L(cos(ωt))?
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Other types of function
Example The Laplace transform of the function f(t) defined by

f(t) =

{
t if 0 ≤ t ≤ 1
1 if t ≥ 1

is (1 − e−s)/s2 as this calculation shows:

Figure 1: Graph of f(t)

t

f(t)

1

L(f(t)) =

∫ 1

0

t × e−st dt using the definition of f(t) for 0 ≤ t ≤ 1

+

∫
∞

1

1 × e−st dt using the definition of f(t) for t ≥ 1

=

[

t ×
−1

s
e−st

]t=1

t=0
︸ ︷︷ ︸

(a)

−

∫ 1

0

1 ×
−1

s
e−st dt

︸ ︷︷ ︸

(b)

integrating by parts for the first integral

+

[
−1

s
e−st

]t=∞

t=1
︸ ︷︷ ︸

(c)

evaluating the second integral

=
−e−s

s
substituting limits t = 1 and t = 0 in (a)

−

[
1

s2
e−st

]t=1

t=0
︸ ︷︷ ︸

(d)

integrating (b) again, noting three minus signs

+
e−s

s
substituting limits t = ∞ and t = 1 in (c)

=
−e−s

s
+

e−s

s
already found and cancelling out

+
1 − e−s

s2
substituting limits t = 1 and t = 0 in (d), giving L(f(t))

The First Shift Theorem

This theorem says that if L(f(t)) = F (s) then L(f(t)e−at) = F (s + a). To see this compare
these integrals; the second is similar to
the first, but with s replaced by s + a.

L(f(t)) =

∫
∞

0

f(t)e−st dt

L(f(t)e−at) =

∫
∞

0

f(t) e−ate−st

︸ ︷︷ ︸

=e−(s+a)t

dt

Example The Laplace transform of
the decaying sinusoidal oscillations

e−2t sin(20t) is
20

(s + 2)2 + 400

Figure 2: Decaying sinusoidal oscilliations
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Exercise What is the Laplace Transform of e−at cos(ωt)? Answer
s + a

(s + a)2 + ω2
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