The laws of logarithms

Introduction

There are a number of rules known as the laws of logarithms. These allow expressions involving logarithms to be rewritten in a variety of different ways. The laws apply to logarithms of any base but the same base must be used throughout a calculation.

The laws of logarithms

The three main laws are stated here:

First Law

\[\log A + \log B = \log AB \]

This law tells us how to add two logarithms together. Adding \(\log A \) and \(\log B \) results in the logarithm of the product of \(A \) and \(B \), that is \(\log AB \).

For example, we can write

\[\log_{10} 5 + \log_{10} 4 = \log_{10}(5 \times 4) = \log_{10} 20 \]

The same base, in this case 10, is used throughout the calculation. You should verify this by evaluating both sides separately on your calculator.

Second Law

\[\log A - \log B = \log \frac{A}{B} \]

So, subtracting \(\log B \) from \(\log A \) results in \(\log \frac{A}{B} \).

For example, we can write

\[\log_e 12 - \log_e 2 = \log_e \frac{12}{2} = \log_e 6 \]

The same base, in this case \(e \), is used throughout the calculation. You should verify this by evaluating both sides separately on your calculator.

Third Law

\[\log A^n = n \log A \]

So, for example

\[\log_{10} 5^3 = 3 \log_{10} 5 \]

You should verify this by evaluating both sides separately on your calculator.

Two other important results are...
The logarithm of 1 to any base is always 0, and the logarithm of a number to the same base is always 1. In particular,
\[\log_{10} 10 = 1, \quad \text{and} \quad \log_{e} e = 1 \]

Exercises

1. Use the first law to simplify the following.

 a) \(\log_{10} 6 + \log_{10} 3 \),
 b) \(\log x + \log y \),
 c) \(\log 4x + \log x \),
 d) \(\log a + \log b^2 + \log c^3 \).

2. Use the second law to simplify the following.

 a) \(\log_{10} 6 - \log_{10} 3 \),
 b) \(\log x - \log y \),
 c) \(\log 4x - \log x \).

3. Use the third law to write each of the following in an alternative form.

 a) \(3 \log_{10} 5 \),
 b) \(2 \log x \),
 c) \(\log (4x)^2 \),
 d) \(5 \ln x^4 \),
 e) \(\ln 1000 \).

4. Simplify \(3 \log x - \log x^2 \).

Answers

1. a) \(\log_{10} 18 \),
 b) \(\log xy \),
 c) \(\log 4x^2 \),
 d) \(\log ab^2 c^3 \).

2. a) \(\log_{10} 2 \),
 b) \(\log \frac{y}{x} \),
 c) \(\log 4 \).

3. a) \(\log_{10} 5^3 \) or \(\log_{10} 125 \),
 b) \(\log x^2 \),
 c) \(2 \log (4x) \),
 d) \(20 \ln x \) or \(\ln x^{20} \),
 e) \(1000 = 10^3 \) so \(\ln 1000 = 3 \ln 10 \).

4. \(\log x \).