mathcentre

community project

matfrentre community project
 encouraging academics to share maths support resources

Proof by Induction : Further Examples

mccp-dobson-3111

Example

Prove by induction that $11^{n}-6$ is divisible by 5 for every positive integer n.

Solution

Let $P(n)$ be the mathematical statement

$$
11^{n}-6 \text { is divisible by } 5 .
$$

Base Case: When $n=1$ we have $11^{1}-6=5$ which is divisible by 5 . So $P(1)$ is correct.
Induction hypothesis: Assume that $P(k)$ is correct for some positive integer k. That means $11^{k}-6$ is divisible by 5 and hence $11^{k}-6=5 m$ for some integer m. So $11^{k}=5 m+6$.

Induction step: We will now show that $P(k+1)$ is correct. Always keep in mind what we are aiming for and what we know to be true. In this case we want to show that $11^{k+1}-6$ can be expressed as a multiple of 5 , so we will start with the formula $11^{k+1}-6$ and we will rearrange it into something involving multiples of 5 . At some point we will also want to use the assumption that $11^{k}=5 m+6$.

$$
\begin{aligned}
11^{k+1}-6 & =\left(11 \times 11^{k}\right)-6 & & \text { by the laws of powers } \\
& =11(5 m+6)-6 & & \text { by the induction hypothesis } \\
& =11(5 m)+66-6 & & \text { by expanding the bracket } \\
& =5(11 m)+60 & &
\end{aligned}
$$

As $11 m+12$ is an integer we have that $11^{k+1}-6$ is divisible by 5 , so $P(k+1)$ is correct. Hence by mathematical induction $P(n)$ is correct for all positive integers n.

Example

Prove by induction that $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$ for every positive integer n.

Solution

Let $P(n)$ be the statement $1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
Base Case: When $n=1$ the left hand side of the equation is 1 and the right hand side is $\frac{1(1+1)(2+1)}{6}=\frac{2 \times 3}{6}=1$. So $P(1)$ is correct.

Induction hypothesis: Assume that $P(k)$ is correct for some positive integer k. That means that the left hand side of the equation equals the right hand side, so $1^{2}+2^{2}+3^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6}$.

Induction step: We will now show that $P(k+1)$ is correct. Keep in mind what we are aiming for, so in this case the right hand side of the equation should be $\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} \bigoplus \frac{(k+1)(k+2)(2 k+3)}{6}$. So starting with the left hand side we have

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots & A^{2}+(k+1)^{2}= \\
& =\left(1^{2}+2^{2}+3^{2}+\ldots+k^{2}\right)+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \quad \text { by the induction hypothesis } \\
& =\frac{k(k+1)(2 k+1)}{6}+\frac{6(k+1)^{2}}{6} \text { by making each part a fraction over } 6 \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6} \text { by making it a single fraction over } 6 \\
& =\frac{(k+1)[k(2 k+1)+6(k+1)]}{6} \text { by taking out the common factor } \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \text { by expanding out the square brackets } \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} \text { by factorizing } \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6} \text { this is the right hand side. }
\end{aligned}
$$

So $P(k+1)$ is correct. Hence by mathematical induction $P(n)$ is correct for all positive integers n.

Example

Prove by induction that $2^{n}>2 n$ for every positive integer $n>2$.

Solution

Let $P(n)$ be the mathematical statement

$$
2^{n}>2 n
$$

Base Case: When $n=3$ we have $2^{3}=8>6=2 \times 3$. So $P(3)$ is correct.
Induction hypothesis: Assume that $P(k)$ is correct for some positive integer k. That means that $2^{k}>2 k$.
Induction step: We will now show that $P(k+1)$ is correct.

$$
\begin{aligned}
2^{k+1}=2 \times 2^{k} & >2 \times 2 k \quad \text { by the induction hypothesis } \\
& =2(k+1) .
\end{aligned}
$$

So $P(k+1)$ is correct. Hence by mathematical induction $P(n)$ is correct for all positive integers $n>2$.

Exercises

Prove by induction that

1. $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 3}+\ldots+\frac{1}{n \times(n+1)}=\frac{n}{n+1}$ for all positive integers.
2. $n^{3}-n$ is divisible by 6 for all positive integers.
3. $2^{n+2}+3^{2 n+1}$ is divisible by 7 for all positive integers.
