Introduction

Suppose we have the first order differential equation

\[P(y) \frac{dy}{dx} = Q(x) \]

where \(Q(x) \) and \(P(y) \) are functions involving \(x \) and \(y \) only respectively. For example

\[y^2 \frac{dy}{dx} = \frac{1}{x^3} \quad \text{or} \quad \frac{1}{y^2} \frac{dy}{dx} = \frac{x - 3}{x^3}. \]

We can solve these differential equations using the technique of separating variables.

General Solution

By taking the original differential equation

\[P(y) \frac{dy}{dx} = Q(x) \]

we can solve this by separating the equation into two parts. We move all of the equation involving the \(y \) variable to one side and all of the equation involving the \(x \) variable to the other side, then we can integrate both sides. Although \(\frac{dy}{dx} \) is not a fraction, we can intuitively treat it like one to move the "\(dx \)" to the right hand side. So

\[P(y) \frac{dy}{dx} = Q(x) \iff \int P(y) \, dy = \int Q(x) \, dx. \]

Example

Let us find the general solution of the differential equation

\[y^2 \frac{dy}{dx} = \frac{1}{x^3}. \]

\[y^2 \frac{dy}{dx} = \frac{1}{x^3} \iff \int y^2 \, dy = \int \frac{1}{x^3} \, dx \]

\[\iff \int y^2 \, dy = \int x^{-3} \, dx \]

\[\iff \frac{y^3}{3} = -\frac{2}{3} + c \quad \text{where} \ c \ \text{is a constant} \]

\[\iff y^3 = -\frac{3}{2} + 3c \]

\[\iff y = \sqrt[3]{-\frac{3}{2} + 3c} \]
Example

To find the general solution of the differential equation

\[
\frac{dy}{dx} = \frac{y^2(x - 3)}{x^3}
\]

we first need to move the \(y^2\) to the left hand side of the equation. Then we move the \(dx\) to the right hand side of the equation and integrate both sides.

\[
\frac{dy}{y^2} = \frac{x - 3}{x^3} \iff \int \frac{1}{y^2} dy = \int \frac{x - 3}{x^3} dx
\]

\[
\iff \int \frac{1}{y^2} dy = \int \frac{x}{x^3} - \frac{3}{x^3} dx
\]

\[
\iff \int y^{-2} dy = \int \frac{1}{x^2} - \frac{3}{x^3} dx
\]

\[
\iff -y^{-1} = -x^{-1} + \frac{3x^{-2}}{2} + c \quad \text{where} \ c \ \text{is a constant}
\]

\[
\iff -\frac{1}{y} = -\frac{1}{x} + \frac{3}{2x^2} + c
\]

\[
\iff \frac{1}{y} = \frac{1}{x} - \frac{3}{2x^2} - c
\]

\[
\iff \frac{1}{y} = \frac{2x}{2x^2} - \frac{3}{2x^2} - \frac{2cx^2}{2x^2}
\]

\[
\iff y = \frac{2x^2}{2x - 3 - 2cx^2}
\]

\[
\iff y = \frac{2x}{2x - 3 - 2cx^2}
\]

Exercises

Find the general solution of

1. \(\frac{dy}{dx} = y(1 + e^x)\)
2. \(\frac{dy}{dx} = \frac{x}{y}\)
3. \(\frac{dy}{dx} = 9x^2y\)
4. \(\frac{4}{y^3} \frac{dy}{dx} = \frac{1}{x}\)

Answers

1. \(y = e^{x+x^e+c}\)
2. \(y = \pm \sqrt{x^2 + 2c}\)
3. \(y = e^{x^3+c}\)
4. \(y = \pm \sqrt{-\frac{2}{\ln |x| + c}}\)

Note that the \(\pm\) symbol like in Exercise 2 means that the differential equation has two sets of solutions, \(y = \sqrt{x^2 + 2c}\) and \(y = -\sqrt{x^2 + 2c}\).