Direct Proof

Introduction

A direct proof is one of the most familiar forms of proof. We use it to prove statements of the form "if \(p \) then \(q \)" or "\(p \) implies \(q \)" which we can write as \(p \Rightarrow q \). The method of the proof is to takes an original statement \(p \), which we assume to be true, and use it to show directly that another statement \(q \) is true. So a direct proof has the following steps:

- Assume the statement \(p \) is true.
- Use what we know about \(p \) and other facts as necessary to deduce that another statement \(q \) is true, that is show \(p \Rightarrow q \) is true.

Example

Directly prove that if \(n \) is an odd integer then \(n^2 \) is also an odd integer.

Solution

Let \(p \) be the statement that \(n \) is an odd integer and \(q \) be the statement that \(n^2 \) is an odd integer. Assume that \(n \) is an odd integer, then by definition \(n = 2k + 1 \) for some integer \(k \). We will now use this to show that \(n^2 \) is also an odd integer.

\[
\begin{align*}
n^2 &= (2k + 1)^2 \\
&= (2k + 1)(2k + 1) \\
&= 4k^2 + 2k + 2k + 1 \\
&= 4k^2 + 4k + 1 \\
&= 2(2k^2 + 2k) + 1
\end{align*}
\]

since \(n = 2k + 1 \)

by expanding the brackets

Hence we have shown that \(n^2 \) has the form of an odd integer since \(2k^2 + 2k \) is an integer. Therefore we have shown that \(p \Rightarrow q \) and so we have completed our proof.

Example

Let \(a, b \) and \(c \) be integers, directly prove that if \(a \) divides \(b \) and \(a \) divides \(c \) then \(a \) also divides \(b + c \).

Solution

Let \(a, b \) and \(c \) be integers and assume that \(a \) divides \(b \) and \(a \) divides \(c \). Then as \(a \) divides \(b \), by definition, there is some integer \(k \) such that \(b = ak \). Also as \(a \) divides \(c \), by definition, there is some integer \(l \) such that \(c = al \). Note that we use different letters \(k \) and \(l \) to stand for the integers...
because we do not know if \(b \) and \(c \) are equal or not. We will now use these two facts to get our conclusion. So

\[
b + c = (ak) + (al) = a(k + l)
\]

by our definitions of \(b \) and \(c \) since \(a \) is a common factor.

Hence \(a \) divides \(b + c \) since \(k + l \) is an integer.

Example

Directly prove that if \(m \) and \(n \) are odd integers then \(mn \) is also an odd integer.

Solution

Assume that \(m \) and \(n \) are odd integers. Then by definition \(m = 2k + 1 \) for some integer \(k \) and \(n = 2l + 1 \) for some integer \(l \). Again note that we have used different integers \(k \) and \(l \) in the definitions of \(m \) and \(n \). We will now use this to show that \(mn \) is also an odd integer.

\[
mn = (2k + 1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1
\]

by our definitions of \(m \) and \(n \) by expanding the brackets since \(2 \) is a common factor.

Hence we have shown that \(mn \) has the form of an odd integer since \(2kl + k + l \) is an integer.

Example

Let \(m \) and \(n \) be integers. Directly prove that if \(m \) and \(n \) are perfect squares then \(mn \) is also a perfect square.

Solution

Recall the definition that an integer \(m \) is a perfect square if \(m = k^2 \) for some integer \(k \). Now assume that \(m \) and \(n \) are integers and are perfect squares. Then by definition \(m = k^2 \) for some integer \(k \) and \(n = l^2 \) for some integer \(l \). We will now use these facts to show that \(mn \) is also a perfect square.

\[
mn = k^2l^2 = (kl)^2
\]

and \(kl \) is an integer, therefore \(mn \) is a perfect square.

Exercises

Prove directly that

1. If \(n \) is an even integer then \(7n + 4 \) is an even integer.
2. If \(m \) is an even integer and \(n \) is an odd integer then \(m + n \) is an odd integer.
3. If \(m \) is an even integer and \(n \) is an odd integer then \(mn \) is an even integer.
4. If \(a, b \) and \(c \) are integers such that \(a \) divides \(b \) and \(b \) divides \(c \) then \(a \) divides \(c \).