3.B.3. Calculating the molar absorbance coefficient (ϵ) from absorbance and concentration data

Learning Objective.

To calculate a value for ε from experimental data of absorbance and concentration.

In this example we are using data for **p-nitrophenol** which is a yellow-coloured reagent commonly used in diagnostic tests (ELISA's).

p-nitrophenol absorbs well with light of about 400 nm so we measure the absorbance using light of that wavelength in a cuvette of pathlength 1 cm and call the absorbance A_{400} .

A =
$$\varepsilon$$
Cd = (ε d)C; in a graph of A vs C, the slope is ε d.
 $slope = \varepsilon.d = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0.91 - 0}{(0.05 - 0)mM} = 18.2(mM)^{-1}$
d = 1 cm
so
 $\varepsilon = \frac{18.2(mM)^{-1}}{d} = \frac{18.2(mM)^{-1}}{1cm} = 18.2mM^{-1}cm^{-1}$

Creative Commons Attribution Non-commercial Share Alike Author: Dr Jenny A Koenig

3B3: Calculating the molar absorbance coefficient from experimental data

However.... ϵ is usually written with the units M⁻¹.cm⁻¹. How do we get ϵ in the right units?

Two possible methods:

1

Possibly the easiest way is to start with M rather than mM in the first place.

$$\epsilon d = \frac{0.91 - 0}{(0.05 - 0) \times 10^{-3} M} = 18.2 (10^{-3} M)^{-1} = 18.2 \times 10^{3} M^{-1} = 18200 M^{-1}$$

then

 $\epsilon = 18200 \text{ M}^{-1} \text{ cm}^{-1}$

 ϵ = 18200 M⁻¹ / 1 cm = 18200 M⁻¹.cm⁻¹

2 Another method is to say 1000 mM = 1 M, so 1000 mM.M⁻¹ = 1 If $\varepsilon = 18.2 \text{ mM}^{-1}.\text{cm}^{-1}$ then you can multiply both sides by 1 (=1000 mM.M⁻¹) $\varepsilon = 18.2 \text{ mM}^{-1}.\text{cm}^{-1} \text{ x 1000 mM.M}^{-1}$ then the mM⁻¹ cancels with the mM $\varepsilon = 18.2 \text{ mM}^{-1}.\text{cm}^{-1} \text{ x 1000 mM.M}^{-1}$ and you are left with

Creative Commons Attribution Non-commercial Share Alike Author: Dr Jenny A Koenig

