Imaginary numbers and quadratic equations

Using the imaginary number i it is possible to solve all quadratic equations.

Example Use the formula for solving a quadratic equation to solve $x^2 - 2x + 10 = 0$.

Solution We use the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

With $a = 1$, $b = -2$ and $c = 10$ we find

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(10)}}{2}$$

$$= \frac{2 \pm \sqrt{4 - 40}}{2}$$

$$= \frac{2 \pm \sqrt{-36}}{2}$$

$$= \frac{2 \pm 6i}{2}$$

$$= 1 \pm 3i$$

There are two solutions: $x = 1 + 3i$ and $x = 1 - 3i$.

Example Use the formula for solving a quadratic equation to solve $2x^2 + x + 1 = 0$.

Solution We use the formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

With $a = 2$, $b = 1$ and $c = 1$ we find

$$x = \frac{-1 \pm \sqrt{1^2 - (4)(2)(1)}}{2(2)}$$

$$= \frac{-1 \pm \sqrt{-7}}{4}$$

$$= \frac{-1 \pm \sqrt{7}i}{4}$$

$$= -\frac{1}{4} \pm \frac{\sqrt{7}}{4}i$$

There are two solutions: $x = -\frac{1}{4} + \frac{\sqrt{7}}{4}i$ and $x = -\frac{1}{4} - \frac{\sqrt{7}}{4}i$.

We have seen how we can write down the solution of any quadratic equation.

A number like $x = -\frac{1}{4} + \frac{\sqrt{7}}{4}i$, which has a real part, (here the real part is $-\frac{1}{4}$), and an imaginary part, (here the imaginary part is $\frac{\sqrt{7}}{4}$), is called a **complex number**. We will describe complex numbers more formally in the next unit.