2.22

Sigma notation

Introduction

Sigma notation, \sum, provides a concise and convenient way of writing long sums. This leaflet explains how.

1. Sigma notation

The sum

$$
1+2+3+4+5+\ldots+10+11+12
$$

can be written very concisely using the capital Greek letter \sum as

$$
\sum_{k=1}^{k=12} k
$$

The \sum stands for a sum, in this case the sum of all the values of k as k ranges through all whole numbers from 1 to 12 . Note that the lower-most and upper-most values of k are written at the bottom and top of the sigma sign respectively. You may also see this written as $\sum_{k=1}^{k=12} k$, or even as $\sum_{k=1}^{12} k$.

Example

Write out explicitly what is meant by

$$
\sum_{k=1}^{k=5} k^{3}
$$

Solution

We must let k range from 1 to 5 , cube each value of k, and add the results:

$$
\sum_{k=1}^{k=5} k^{3}=1^{3}+2^{3}+3^{3}+4^{3}+5^{3}
$$

Example

Express $\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$ concisely using sigma notation.

Solution

Each term takes the form $\frac{1}{k}$ where k varies from 1 to 4 . In sigma notation we could write this as

$$
\sum_{k=1}^{k=4} \frac{1}{k}
$$

Example

The sum

$$
x_{1}+x_{2}+x_{3}+x_{4}+\ldots+x_{19}+x_{20}
$$

can be written

$$
\sum_{k=1}^{k=20} x_{k}
$$

There is nothing special about using the letter k. For example

$$
\sum_{n=1}^{n=7} n^{2} \quad \text { stands for } \quad 1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}+7^{2}
$$

We can also use a little trick to alternate the signs of the numbers between + and - . Note that $(-1)^{2}=1,(-1)^{3}=-1$ and so on.

Example

Write out fully what is meant by

$$
\sum_{i=0}^{5} \frac{(-1)^{i+1}}{2 i+1}
$$

Solution

$$
\sum_{i=0}^{5} \frac{(-1)^{i+1}}{2 i+1}=-1+\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}
$$

Exercises

1. Write out fully what is meant by
a) $\sum_{i=1}^{i=5} i^{2}$
b) $\sum_{k=1}^{4}(2 k+1)^{2}$
c) $\sum_{k=0}^{4}(2 k+1)^{2}$
2. Write out fully what is meant by

$$
\sum_{k=1}^{k=3}\left(\bar{x}-x_{k}\right)
$$

3. Sigma notation is often used in statistical calculations. For example the mean, \bar{x}, of the n quantities $x_{1}, x_{2} \ldots$ and x_{n}, is found by adding them up and dividing the result by n. Show that the mean can be written as

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

4. Write out fully what is meant by $\sum_{i=1}^{4} \frac{i}{i+1}$.
5. Write out fully what is meant by $\sum_{k=1}^{3} \frac{(-1)^{k}}{k}$.

Answers

1. a) $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}$,
b) $3^{2}+5^{2}+7^{2}+9^{2}$,
c) $1^{2}+3^{2}+5^{2}+7^{2}+9^{2}$.
2. $\left(\bar{x}-x_{1}\right)+\left(\bar{x}-x_{2}\right)+\left(\bar{x}-x_{3}\right)$,
3. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\frac{4}{5}$,
4. $\frac{-1}{1}+\frac{1}{2}+\frac{-1}{3}$ which equals $-1+\frac{1}{2}-\frac{1}{3}$.
