Bases other than 10 and e

Introduction

Occasionally you may need to find logarithms to bases other than 10 and e. For example, logarithms to the base 2 are used in communications engineering and information technology. Your calculator can still be used but we need to apply a formula for changing the base. This leaflet gives this formula and shows how to use it.

1. A formula for change of base

Suppose we want to calculate a logarithm to base 2. The formula states

$$
\log _{2} x=\frac{\log _{10} x}{\log _{10} 2}
$$

So we can calculate base 2 logarithms using base 10 logarithms obtained using a calculator. For example

$$
\log _{2} 36=\frac{\log _{10} 36}{\log _{10} 2}=\frac{1.5563}{0.3010}=5.1704
$$

Check this for yourself.
More generally, for any bases a and b,

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

In particular, by choosing $b=10$ we find

$$
\log _{a} x=\frac{\log _{10} x}{\log _{10} a}
$$

Use this formula to check that $\log _{20} 100=1.5372$.

Exercises

1. Find a) $\log _{2} 15$,
b) $\log _{2} 56.25$,
c) $\log _{3} 16$.

Answers

1. a) 3.907 (3 dp),
b) 5.814 (3dp),
c) $2.524(3 \mathrm{dp})$.
