1.5

The modulus of a number

Introduction

In many engineering calculations you will come across the symbol $\|$. This is known as the modulus.

1. The modulus of a number

The modulus of a number is its absolute size. That is, we disregard any sign it might have.

Example

The modulus of -8 is simply 8 .
The modulus of $-\frac{1}{2}$ is $\frac{1}{2}$.
The modulus of 17 is simply 17 .
The modulus of 0 is 0 .

So, the modulus of a positive number is simply the number.
The modulus of a negative number is found by ignoring the minus sign.
The modulus of a number is denoted by writing vertical lines around the number.
Note also that the modulus of a negative number can be found by multiplying it by -1 since, for example, $-(-8)=8$.

This observation allows us to define the modulus of a number quite concisely in the following way

$$
|x|= \begin{cases}x & \text { if } x \text { is positive or zero } \\ -x & \text { if } x \text { is negative }\end{cases}
$$

Example

$$
|9|=9, \quad|-11|=11, \quad|0.25|=0.25, \quad|-3.7|=3.7
$$

Exercise

1. Draw up a table of values of $|x|$ as x varies between -6 and 6. Plot a graph of $y=|x|$. Compare your graph with the graphs of $y=x$ and $y=-x$.
