
3.1

What is a function?

Introduction

A quantity whose value can change is known as a variable. Functions are used to describe the rules which define the ways in which such a change can occur. The purpose of this leaflet is to explain functions and their notation.

1. The function rule

A function is a rule which operates on an input and produces an output. This can be illustrated using a block diagram such as that shown below. We can think of the function as a mathematical machine which processes the input, using a given rule, in order to produce an output. We often write the rule inside the box.

In order for a rule to be a function it must produce only a single output for any given input. The function with the rule 'double the input' is shown below.

Note that with an input of 4 the function would produce an output of 8 . With a more general input, x say, the output will be $2 x$. It is usual to assign a letter or other symbol to a function in order to label it. The doubling function pictured in the example above has been given the symbol f.

A function is a rule which operates on an input and produces a single output from that input.

For the doubling function it is common to use the notation

$$
f(x)=2 x
$$

This indicates that with an input x, the function, f, produces an output of $2 x$. The input to the function is placed in the brackets after the function label ' f '. $f(x)$ is read as ' f is a function of x ', or simply ' f of x ', meaning that the output from the function depends upon the value of the input x.

Example

State the rule of each of the following functions:
a) $f(x)=7 x+9$,
b) $h(t)=t^{3}+2$,
c) $p(x)=x^{3}+2$.

Solution

a) The rule for f is 'multiply the input by 7 and then add 9 '.
b) The rule for h is 'cube the input and add 2 '.
c) The rule for p is 'cube the input and add 2 '.

Note from parts b) and c) that it is the rule that is important when describing a function and not the letters being used. Both $h(t)$ and $p(x)$ instruct us to 'cube the input and add 2'.
The input to a function is called its argument. We can obtain the output from a function if we are given its argument. For example, given the function $f(x)=3 x+2$ we may require the value of the output when the argument is 5 . We write this as $f(5)$. Here, $f(5)=3 \times 5+2=17$.

Example

Given the function $f(x)=4 x+3$ find a) $f(-1), \quad$ b) $f(6)$

Solution

a) Here the argument is -1 . We find $f(-1)=4 \times(-1)+3=-1$.
b) $f(6)=4(6)+3=27$.

Sometimes the argument will be an algebraic expression, as in the following example.

Example

Given the function $y(x)=5 x-3$ find
a) $y(t)$,
b) $y(7 t)$,
c) $y(z+2)$.

Solution

The function rule is multiply the input by 5 , and subtract 3 . We can apply this rule whatever the argument.
a) To find $y(t)$ multiply the argument, t, by 5 and subtract 3 to give $y(t)=5 t-3$.
b) Now the argument is $7 t$. So $y(7 t)=5(7 t)-3=35 t-3$.
c) In this case the argument is $z+2$. We find $y(z+2)=5(z+2)-3=5 z+10-3=5 z+7$.

Exercises

1. Write down a function which can be used to describe the following rules:
a) 'cube the input and divide the result by 2 ',
b) 'divide the input by 5 and then add 7 '
2. Given the function $f(x)=7 x-3$ find a) $f(3)$,
b) $f(6)$, c) $f(-2)$.
3. If $g(t)=t^{2}$ write down expressions for a) $g(x)$,
b) $g(3 t) \quad$ c) $g(x+4)$.

Answers

1. a) $f(x)=\frac{x^{3}}{2}$,
b) $f(x)=\frac{x}{5}+7$.
2. a) 18 ,
b) 39 , c) -17
3. a) $g(x)=x^{2}$,
b) $g(3 t)=(3 t)^{2}=9 t^{2}$,
c) $g(x+4)=(x+4)^{2}=x^{2}+8 x+16$.
